Hotz-isomorphism theorems in formal language theory

Volker Diekert; Axel Möbus

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1989)

  • Volume: 23, Issue: 1, page 29-43
  • ISSN: 0988-3754

How to cite

top

Diekert, Volker, and Möbus, Axel. "Hotz-isomorphism theorems in formal language theory." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 23.1 (1989): 29-43. <http://eudml.org/doc/92321>.

@article{Diekert1989,
author = {Diekert, Volker, Möbus, Axel},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {equivalence of context-free grammars; Hotz group; Hotz isomorphism; finitely presentable group; Hotz monoids; undecidability},
language = {eng},
number = {1},
pages = {29-43},
publisher = {EDP-Sciences},
title = {Hotz-isomorphism theorems in formal language theory},
url = {http://eudml.org/doc/92321},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Diekert, Volker
AU - Möbus, Axel
TI - Hotz-isomorphism theorems in formal language theory
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1989
PB - EDP-Sciences
VL - 23
IS - 1
SP - 29
EP - 43
LA - eng
KW - equivalence of context-free grammars; Hotz group; Hotz isomorphism; finitely presentable group; Hotz monoids; undecidability
UR - http://eudml.org/doc/92321
ER -

References

top
  1. 1. A. CLIFFORD and G. PRESTON, The Algebraic Theory of Semigroups, Amer. Math. Soc., Vol. I, 1961; Vol. II, 1967. Zbl0111.03403
  2. 2. V. DIEKERT, Investigations on Hotz Groups for Arbitrary grammars, Acta Informatica, Vol. 22, 1986, pp. 679-698. Zbl0612.68067MR836387
  3. 3. V. DIEKERT, On some variants of the Ehrenfeucht Conjecture, Theoret. Comp. Sci., Vol. 46, 1986, pp. 313-318. Zbl0617.68067MR869212
  4. 4. C. FROUGNY, J. SAKAROVITCH and E. VALKEMAOn the Hotz Group of a Contextfree Grammar, Acta Informatica, Vol. 18, 1982, pp. 109-115. Zbl0495.68066MR688347
  5. 5. G. HOTZ, Eine neue Invariante für Kontext-freie Sprachen, Theoret. Comp. Sci, Vol. 11, 1980, pp. 107-116. Zbl0447.68089MR566697
  6. 6. J. E. HOPCROFT and J. D. ULLMAN, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, Massachusetts, 1979. Zbl0426.68001MR645539
  7. 7. M. JANTZEN and M. KUDLEK, Homomorphic Images of Sentential Form Languages Defined by Semi-Thue System, Theoret. Comp. Sci., Vol. 33, 1984, pp. 13-43. Zbl0542.68059MR774218
  8. 8. A. MÖBUS, On Languages with a Hotz-isomorphism, Manuscript, 1986. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.