Hotz-isomorphism theorems in formal language theory
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1989)
- Volume: 23, Issue: 1, page 29-43
- ISSN: 0988-3754
Access Full Article
topHow to cite
topDiekert, Volker, and Möbus, Axel. "Hotz-isomorphism theorems in formal language theory." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 23.1 (1989): 29-43. <http://eudml.org/doc/92321>.
@article{Diekert1989,
author = {Diekert, Volker, Möbus, Axel},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {equivalence of context-free grammars; Hotz group; Hotz isomorphism; finitely presentable group; Hotz monoids; undecidability},
language = {eng},
number = {1},
pages = {29-43},
publisher = {EDP-Sciences},
title = {Hotz-isomorphism theorems in formal language theory},
url = {http://eudml.org/doc/92321},
volume = {23},
year = {1989},
}
TY - JOUR
AU - Diekert, Volker
AU - Möbus, Axel
TI - Hotz-isomorphism theorems in formal language theory
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1989
PB - EDP-Sciences
VL - 23
IS - 1
SP - 29
EP - 43
LA - eng
KW - equivalence of context-free grammars; Hotz group; Hotz isomorphism; finitely presentable group; Hotz monoids; undecidability
UR - http://eudml.org/doc/92321
ER -
References
top- 1. A. CLIFFORD and G. PRESTON, The Algebraic Theory of Semigroups, Amer. Math. Soc., Vol. I, 1961; Vol. II, 1967. Zbl0111.03403
- 2. V. DIEKERT, Investigations on Hotz Groups for Arbitrary grammars, Acta Informatica, Vol. 22, 1986, pp. 679-698. Zbl0612.68067MR836387
- 3. V. DIEKERT, On some variants of the Ehrenfeucht Conjecture, Theoret. Comp. Sci., Vol. 46, 1986, pp. 313-318. Zbl0617.68067MR869212
- 4. C. FROUGNY, J. SAKAROVITCH and E. VALKEMAOn the Hotz Group of a Contextfree Grammar, Acta Informatica, Vol. 18, 1982, pp. 109-115. Zbl0495.68066MR688347
- 5. G. HOTZ, Eine neue Invariante für Kontext-freie Sprachen, Theoret. Comp. Sci, Vol. 11, 1980, pp. 107-116. Zbl0447.68089MR566697
- 6. J. E. HOPCROFT and J. D. ULLMAN, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, Massachusetts, 1979. Zbl0426.68001MR645539
- 7. M. JANTZEN and M. KUDLEK, Homomorphic Images of Sentential Form Languages Defined by Semi-Thue System, Theoret. Comp. Sci., Vol. 33, 1984, pp. 13-43. Zbl0542.68059MR774218
- 8. A. MÖBUS, On Languages with a Hotz-isomorphism, Manuscript, 1986.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.