A normal form for restricted exponential functions
Pierpaolo Degano; Patrizia Gianni
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1989)
- Volume: 23, Issue: 2, page 217-231
- ISSN: 0988-3754
Access Full Article
topHow to cite
topDegano, Pierpaolo, and Gianni, Patrizia. "A normal form for restricted exponential functions." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 23.2 (1989): 217-231. <http://eudml.org/doc/92332>.
@article{Degano1989,
author = {Degano, Pierpaolo, Gianni, Patrizia},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {first order theory; towers of simple exponentiations; term rewriting system; identity problem},
language = {eng},
number = {2},
pages = {217-231},
publisher = {EDP-Sciences},
title = {A normal form for restricted exponential functions},
url = {http://eudml.org/doc/92332},
volume = {23},
year = {1989},
}
TY - JOUR
AU - Degano, Pierpaolo
AU - Gianni, Patrizia
TI - A normal form for restricted exponential functions
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1989
PB - EDP-Sciences
VL - 23
IS - 2
SP - 217
EP - 231
LA - eng
KW - first order theory; towers of simple exponentiations; term rewriting system; identity problem
UR - http://eudml.org/doc/92332
ER -
References
top- 1. G. H. HARDY, Orders of infinity, Cambridge Tracts in Math. Phys., 12, Cambridge University Press 1910, Reprint Hafner, New York. Zbl41.0303.01JFM41.0303.01
- 2. C. W. HENSON and L. A. RUBEL, Some Applications of Nevalinna Theory to Mathematical Logic: Identities of Exponential Functions, Trans. of the American Math. Soc., Vol. 282, No. 1, 1984, pp. 1-32. Zbl0533.03015MR728700
- 3. G. HUET and D. C. OPPEN, Equations and Rewrite Rules: A Survey. In: Formal Languages Theory: Perspectives and Open Problems, R. BOOK Ed., Academic Press, New York, 1980, pp. 349-405.
- 4. D. LANKFORD, On Proving Term Rewriting Systems are Noetherian, Rep. MTP-3, Louisiana Tech. Univ., 1979.
- 5. H. LEVITZ, An Ordered Set of Arithmetic Functions Representing the Least ε-Number, Z. Math. Logik Grundlag. Math., Vol. 21, 1975, pp. 115-120. Zbl0325.04002MR371627
- 6. A. MACINTYRE, The Laws of Exponentiation. In: Model Theory and Arithmetic, C. BERLINE, K. MCALOON and J.-P. RESSAYRE Eds., Lecture Notes in Mathematics, No. 890, Springer-Verlag, Berlin, 1981, pp. 185-197. Zbl0503.08008MR645003
- 7. C. MARTIN, Equational Theories of Natural Numbers and Transfinite Ordinals, Ph. D. Thesis, Univ. of California, Berkley, 1973.
- 8. G. E. PETERSON and M. E. STICKEL, Complete Sets of Reductions for Some Equational Theories, J. of the A.C.M., Vol. 28, 1981, pp. 233-264. Zbl0479.68092MR612079
- 9. A. TARSKI, Equational Logic and Equational Theories of Algebras. In: Contributions to Mathematical Logic, H. A. SCHMIDT, K. SHUTTE and H. J. THIELE Eds., North-Holland, Amsterdam, 1968, pp. 275-288. Zbl0209.01402MR237410
- 10. A. J. WILKIE, On Exponentiation - A Solution to Tarskfs High School Algebra Problem. Unpublished Manuscript, quoted in Assoc. of Automated Reasoning Newsletter, Vol. 3, 1984, p. 6.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.