A normal form for restricted exponential functions

Pierpaolo Degano; Patrizia Gianni

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1989)

  • Volume: 23, Issue: 2, page 217-231
  • ISSN: 0988-3754

How to cite

top

Degano, Pierpaolo, and Gianni, Patrizia. "A normal form for restricted exponential functions." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 23.2 (1989): 217-231. <http://eudml.org/doc/92332>.

@article{Degano1989,
author = {Degano, Pierpaolo, Gianni, Patrizia},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {first order theory; towers of simple exponentiations; term rewriting system; identity problem},
language = {eng},
number = {2},
pages = {217-231},
publisher = {EDP-Sciences},
title = {A normal form for restricted exponential functions},
url = {http://eudml.org/doc/92332},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Degano, Pierpaolo
AU - Gianni, Patrizia
TI - A normal form for restricted exponential functions
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1989
PB - EDP-Sciences
VL - 23
IS - 2
SP - 217
EP - 231
LA - eng
KW - first order theory; towers of simple exponentiations; term rewriting system; identity problem
UR - http://eudml.org/doc/92332
ER -

References

top
  1. 1. G. H. HARDY, Orders of infinity, Cambridge Tracts in Math. Phys., 12, Cambridge University Press 1910, Reprint Hafner, New York. Zbl41.0303.01JFM41.0303.01
  2. 2. C. W. HENSON and L. A. RUBEL, Some Applications of Nevalinna Theory to Mathematical Logic: Identities of Exponential Functions, Trans. of the American Math. Soc., Vol. 282, No. 1, 1984, pp. 1-32. Zbl0533.03015MR728700
  3. 3. G. HUET and D. C. OPPEN, Equations and Rewrite Rules: A Survey. In: Formal Languages Theory: Perspectives and Open Problems, R. BOOK Ed., Academic Press, New York, 1980, pp. 349-405. 
  4. 4. D. LANKFORD, On Proving Term Rewriting Systems are Noetherian, Rep. MTP-3, Louisiana Tech. Univ., 1979. 
  5. 5. H. LEVITZ, An Ordered Set of Arithmetic Functions Representing the Least ε-Number, Z. Math. Logik Grundlag. Math., Vol. 21, 1975, pp. 115-120. Zbl0325.04002MR371627
  6. 6. A. MACINTYRE, The Laws of Exponentiation. In: Model Theory and Arithmetic, C. BERLINE, K. MCALOON and J.-P. RESSAYRE Eds., Lecture Notes in Mathematics, No. 890, Springer-Verlag, Berlin, 1981, pp. 185-197. Zbl0503.08008MR645003
  7. 7. C. MARTIN, Equational Theories of Natural Numbers and Transfinite Ordinals, Ph. D. Thesis, Univ. of California, Berkley, 1973. 
  8. 8. G. E. PETERSON and M. E. STICKEL, Complete Sets of Reductions for Some Equational Theories, J. of the A.C.M., Vol. 28, 1981, pp. 233-264. Zbl0479.68092MR612079
  9. 9. A. TARSKI, Equational Logic and Equational Theories of Algebras. In: Contributions to Mathematical Logic, H. A. SCHMIDT, K. SHUTTE and H. J. THIELE Eds., North-Holland, Amsterdam, 1968, pp. 275-288. Zbl0209.01402MR237410
  10. 10. A. J. WILKIE, On Exponentiation - A Solution to Tarskfs High School Algebra Problem. Unpublished Manuscript, quoted in Assoc. of Automated Reasoning Newsletter, Vol. 3, 1984, p. 6. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.