### A decomposability criterion for elementary theories.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

We give a self-contained introduction to universal homogeneous models (also known as rich models) in a general context where the notion of morphism is taken as primitive. We produce an example of an amalgamation class where each connected component has a saturated rich model but the theory of the rich models is not model-complete.

Second of a series of articles laying down the bases for classical first order model theory. A language is defined basically as a tuple made of an integer-valued function (adicity), a symbol of equality and a symbol for the NOR logical connective. The only requests for this tuple to be a language is that the value of the adicity in = is -2 and that its preimage (i.e. the variables set) in 0 is infinite. Existential quantification will be rendered (see [11]) by mere prefixing a formula with a letter....

We describe first-order logic elementary embeddings in a torsion-free hyperbolic group in terms of Sela’s hyperbolic towers. Thus, if $H$ embeds elementarily in a torsion free hyperbolic group $\Gamma $, we show that the group $\Gamma $ can be obtained by successive amalgamations of groups of surfaces with boundary to a free product of $H$ with some free group and groups of closed surfaces. This gives as a corollary that an elementary subgroup of a finitely generated free group is a free factor. We also consider the...

We examine the properties of existentially closed (${}^{\omega}$-embeddable) II₁ factors. In particular, we use the fact that every automorphism of an existentially closed (${}^{\omega}$-embeddable) II₁ factor is approximately inner to prove that Th() is not model-complete. We also show that Th() is complete for both finite and infinite forcing and use the latter result to prove that there exist continuum many nonisomorphic existentially closed models of Th().

Third of a series of articles laying down the bases for classical first order model theory. Interpretation of a language in a universe set. Evaluation of a term in a universe. Truth evaluation of an atomic formula. Reassigning the value of a symbol in a given interpretation. Syntax and semantics of a non atomic formula are then defined concurrently (this point is explained in [16], 4.2.1). As a consequence, the evaluation of any w.f.f. string and the relation of logical implication are introduced....

Fourth of a series of articles laying down the bases for classical first order model theory. This paper supplies a toolkit of constructions to work with languages and interpretations, and results relating them. The free interpretation of a language, having as a universe the set of terms of the language itself, is defined.The quotient of an interpreteation with respect to an equivalence relation is built, and shown to remain an interpretation when the relation respects it. Both the concepts of quotient...

We begin a systematic study of the category GTS of generalized topological spaces (in the sense of H. Delfs and M. Knebusch) and their strictly continuous mappings. We reformulate the axioms. Generalized topology is found to be connected with the concept of a bornological universe. Both GTS and its full subcategory SS of small spaces are topological categories. The second part of this paper will also appear in this journal.

This is the second part of A. Piękosz [Ann. Polon. Math. 107 (2013), 217-241]. The categories GTS(M), with M a non-empty set, are shown to be topological. Several related categories are proved to be finitely complete. Locally small and nice weakly small spaces can be described using certain sublattices of power sets. Some important elements of the theory of locally definable and weakly definable spaces are reconstructed in a wide context of structures with topologies.