A partially persistent data structure for the set-union problem

C. Gaibisso; G. Gambosi; M. Talamo

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1990)

  • Volume: 24, Issue: 2, page 189-202
  • ISSN: 0988-3754

How to cite

top

Gaibisso, C., Gambosi, G., and Talamo, M.. "A partially persistent data structure for the set-union problem." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 24.2 (1990): 189-202. <http://eudml.org/doc/92355>.

@article{Gaibisso1990,
author = {Gaibisso, C., Gambosi, G., Talamo, M.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {Set-Union problem; data structure; worst case complexity},
language = {eng},
number = {2},
pages = {189-202},
publisher = {EDP-Sciences},
title = {A partially persistent data structure for the set-union problem},
url = {http://eudml.org/doc/92355},
volume = {24},
year = {1990},
}

TY - JOUR
AU - Gaibisso, C.
AU - Gambosi, G.
AU - Talamo, M.
TI - A partially persistent data structure for the set-union problem
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1990
PB - EDP-Sciences
VL - 24
IS - 2
SP - 189
EP - 202
LA - eng
KW - Set-Union problem; data structure; worst case complexity
UR - http://eudml.org/doc/92355
ER -

References

top
  1. 1. A. V. AHO, J. E. HOPCROFT and J. D. ULLMAN, The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974. Zbl0326.68005MR413592
  2. 2. N. BLUM, On the Single Operation Worst-case Time Complexity of the Disjoint Set Union problem, Proc. 2nd Symp. on Theoretical Aspects of Computer Science, 1985. Zbl0568.68055MR786866
  3. 3. B. BOLLOBAS and I. SIMON, On the Expected Behavior of Disjoint Set Union Algorithms, Proc. 17th ACM Symp. on Theory of Computing, 1985. 
  4. 4. J. R. DRISCOLL, N. SARNAK, D. D. SLEATOR and R. E. TARJAN, Making Data Structures Persistent, Proc. 18th Symp. on Theory of Computing STOC, 1986. Zbl0667.68026
  5. 5. M. J. FISCHER, Efficiency of Equivalence Algorithms, in Complexity of Computations, R. E. MILLER and J. W. THATCHER Eds., Plenum Press, New York, 1972. MR395316
  6. 6. H. N. GABOW and R. E. TARJAN, A Linear Time Algorithm for a Special case of Disjoint Set Union, Proc. 15th A.C.M. Symp. on Theory of Computing 1983. Zbl0572.68058
  7. 7. B. A. GALLER and M. J. FISCHER, An Improved Equivalence Algorithm, Comm. ACM 7, 1964. Zbl0129.10302
  8. 8. G. GAMBOSI, G. F. ITALIANO and M. TALAMO, Worst-Case Analysis of the Set Union Problem with Backtracking, to appear on "Theoretical Computer Science", 1989. Zbl0678.68035
  9. 9. J. E. HOPCROFT and J. D. ULLMAN, Set Merging Algorithms, S.I.A.M. J. Comput., 2, 1973. Zbl0253.68003MR329310
  10. 10. H. MANNILA and E. UKKONEN, The Set Union Problem with Backtracking, Proc. 13th I.C.A.L.P., 1986. Zbl0596.68039MR864686
  11. 11. R. E. TARJAN, Efficiency of a Good but not Linear Disjoint Set Union Algorithm, J. A.C.M., 22, 1975. Zbl0307.68029MR458996
  12. 12. R. E. TARJAN, A Class of Algorithms which Require Linear Time to Mantain Disjoint Sets, J. Computer and System Sciences, 18, 1979. Zbl0413.68039MR532171
  13. 13. R. E. TARJAN, Amortized Computational Complexity, S.I.A.M. J. Alg. Discr. Meth., 6, 1985. Zbl0599.68046MR778012
  14. 14. R. E. TARJAN and J. VAN LEEUWEN, Worst-Case Analysis of Set Union Algorithms, J. A.C.M. 31, 1984. Zbl0632.68043MR819138
  15. 15. J. VAN LEEUWEN and T. VAN DER WEIDE, Alternative Path Compression Techniques, Techn. Rep. RUU-CS-77-3, Rijksuniversiteit Utrecht, The Netherlands. 
  16. 16. J. WESTBROOK and R. E. TARJAN, Amortized Analysis of Algorithms for Set-Union with Backtracking, Tech. Rep. TR-103-87, Dept. of Computer Science, Princeton University, 1987. Zbl0679.68039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.