Spanning trees with low crossing number

Jiří Matoušek

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1991)

  • Volume: 25, Issue: 2, page 103-123
  • ISSN: 0988-3754

How to cite

top

Matoušek, Jiří. "Spanning trees with low crossing number." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 25.2 (1991): 103-123. <http://eudml.org/doc/92384>.

@article{Matoušek1991,
author = {Matoušek, Jiří},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {spanning tree; crossing number; deterministic algorithm; randomized (Las Vegas) algorithm; Monte Carlo algorithm; randomized algorithms},
language = {eng},
number = {2},
pages = {103-123},
publisher = {EDP-Sciences},
title = {Spanning trees with low crossing number},
url = {http://eudml.org/doc/92384},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Matoušek, Jiří
TI - Spanning trees with low crossing number
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1991
PB - EDP-Sciences
VL - 25
IS - 2
SP - 103
EP - 123
LA - eng
KW - spanning tree; crossing number; deterministic algorithm; randomized (Las Vegas) algorithm; Monte Carlo algorithm; randomized algorithms
UR - http://eudml.org/doc/92384
ER -

References

top
  1. 1. P. K. AGARWAL, A deterministic algorithm for partitioning arrangements of lines and its applications, Proc. 5. Ann. ACM Symposium on Comput. Geometry (1989), pp. 11-21; full version to appear in Discrete & Comput. Geometry, 1990. MR1064575
  2. 2. P. K AGARWAL, Ray shooting and other applications of spanning trees with low stabbing number, Proc. 5. Ann. ACM Symposium on Comput. Geometry (1989), pp. 315-325; full version to appear in Discrete & Comput. Geometry, 1990. MR1163345
  3. 3. K. CLARKSON, New applications of random sampling in computational geometry, Discr. & Comput. Geometry, 1987, 2, pp. 195-222. Zbl0615.68037MR884226
  4. 4. B. CHAZELLE, Lower bounds on the complexity of polytope range searching, J. Amer. Math. Soc., 1989, 2, No. 4, pp. 637-666. Zbl0695.68032MR1001852
  5. 5. B. CHAZELLE and E. WELZL, Quasi-optimal range searching in spaces of finite VC-dimension, Discr. & Comput. Geometry, 1989, 4, pp. 467-490. Zbl0681.68081MR1014739
  6. 6. H. EDELSBRUNNER, Algorithms in combinatorial geometry, Springer-Verlag, 1987. Zbl0634.52001MR904271
  7. 7. H. EDELSBRUNNER and E. WELZL, Halfplanar range search in linear space and O(n0-695) query time, Inf. Proc. Letters, 1986, 23, No. 6, pp. 289-293. Zbl0634.68064
  8. 8. H. EDELSBRUNNER, L. GUIBAS, J. HERSCHBERGER, R. SEIDEL, M. SHARIR, J. SNOEYINK and E. WELZL, Implicitly representing arrangements of lines or segments, Discr. & Comput. Geometry, 1989, 4, pp. 433-466. Zbl0688.68031MR1014738
  9. 9. H. EDELSBRUNNER, J. O'ROURKE and R. SEIDEL, Constructing arrangements of hyperplanes with applications, SIAM J. on Computing, 1984, 15, pp. 341-363. Zbl0603.68104
  10. 10. D. HAUSSLER and E. WELZL, ε-nets and simplex range queries, Discr. & Comput. Geometry, 1987, 2, pp. 127-151. Zbl0619.68056MR884223
  11. 11. D. G. KIRKPATRICK, Optimal search in planar subdivisions, S.I.A.M. J. on Computing, 1983, 12, pp. 28-35. Zbl0501.68034MR687800
  12. 12. F. P. PREPARATA and I. M. SHAMOS, Computational geometry - An introduction, Springer-Verlag, 1985. Zbl0759.68037MR805539
  13. 13. V. N. VAPNIK and A. YA. CHERVONENKIS, On the uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Appl., 1971, 16, pp. 264-280. Zbl0247.60005
  14. 14. E. WELZL, Partition trees for triangle counting and other range searching problems, 4. A.C.M. Symposium on Comput. Geometry, 1988, pp. 23-33. MR1213461

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.