On the parallel complexity of linear groups

St. Waack

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1991)

  • Volume: 25, Issue: 4, page 323-354
  • ISSN: 0988-3754

How to cite

top

Waack, St.. "On the parallel complexity of linear groups." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 25.4 (1991): 323-354. <http://eudml.org/doc/92396>.

@article{Waack1991,
author = {Waack, St.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {word problem for finitely generated linear groups; parallel complexity; polycyclic group},
language = {eng},
number = {4},
pages = {323-354},
publisher = {EDP-Sciences},
title = {On the parallel complexity of linear groups},
url = {http://eudml.org/doc/92396},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Waack, St.
TI - On the parallel complexity of linear groups
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1991
PB - EDP-Sciences
VL - 25
IS - 4
SP - 323
EP - 354
LA - eng
KW - word problem for finitely generated linear groups; parallel complexity; polycyclic group
UR - http://eudml.org/doc/92396
ER -

References

top
  1. 1. L. AUSLANDER, On a problem of Philip Hall, Ann. of Math., 1967, 86(2), pp. 112-116. Zbl0149.26904MR218454
  2. 2. J. AVENHAUS, K. MADLENER, Subrekursive Komplexität bei Gruppen, I. Gruppen mit vorgeschriebener Komplexität, Acta Inform., 1977, 9, pp. 87-104. Zbl0371.02019MR498062
  3. 3. J. AVENHAUS, K. MADLENER, Subrekursive Komplexität bei Gruppen, II. Der Einbettungssatz von Higman für entscheidbare Gruppen, Acta Inform., 1978, 9, pp. 183-193. Zbl0371.02020
  4. 4. J. AVENHAUS, K. MADLENER, The Nielson reduction and P-complete problems in free groups, Theoret. Comput. Sci., 1984, 32, pp. 61-76. Zbl0555.20015
  5. 5. J. AVENHAUS, K. MADLENER, On the complexity of intersection and conjugacy problems in free groups, Theoret. Comput. Sci., 1984, pp. 279-295. Zbl0555.20016
  6. 6. D. A. BARRINGTON, Bounded-width polynomial-size branching programs recognize exactly those languages in NC1, in: Proc. 18th A.C.M. S.T.O.C., 1986, pp. 1-5. 
  7. 7. P. W. BEAME, S. A. COOK, H. J. HOOVER, Logdepth circuits for division and related problems, S.I.A.M. J. Comput., 1986, 15 (4), pp. 993-1003. Zbl0619.68047
  8. 8. A. BORODIN, S. A. COOK, N. PIPPENGER, Parallel computation for well-endowed rings and space bounded probabilistic machines, TR # 162/83, University of Toronto. Zbl0598.68043
  9. 9. S. A. COOK, The classification of problems which have fast parallel algorithms, in: Lecture Notes in Comput. Sci., 158, Springer-Verlag, Berlin, 1983. Zbl0529.68014MR734711
  10. 10. S. A. COOK, A Taxonomy of problems with fast parallel algorithms, Inform. and Control, 1985, 64, pp. 2-22. Zbl0575.68045MR837088
  11. 11. S. A. COOK, P. MCKENZIE, Problems complete for deterministic logarithmic space, J. Algorithms, 1987, 8, pp. 385-394. Zbl0644.68058MR905994
  12. 12. S. A. COOK, P. MCKENZIE, The parallel complexity of abelian permutation group problems, S.I.A.M. J. Comput., 1987, 16(2), pp. 880-909. Zbl0647.68045MR908875
  13. 13. M. J. DUNWOODY, The accessibility of finitely presented groups, Invent. Math., 1985, 81, pp. 449-457. Zbl0572.20025MR807066
  14. 14. M. HALL, Subgroups of finite index in free groups, Canad. J. Math., 1949, 1, pp. 187-190. Zbl0031.34001MR28836
  15. 15. G. H. HARDY, E. M. WRIGHT, An introduction to the theory of numbers, Oxford U. Press, London, 1957. Zbl0058.03301JFM64.0093.03
  16. 16. J. E. HOPCROFT, J. D. ULLMAN, Introduction to automata theory, languages, and computation, Addison-Wesley, Reading, 1979. Zbl0426.68001MR645539
  17. 17. M. KRAUSE, S. WAACK, On oblivious branching programs of linear length, to appear in Inform. and Comput. Zbl0727.68038MR1127534
  18. 18. K. KRIEGEL, S. WAACK, Lower bounds on the complexity of real-time branching programs, RAIRO Inform. Théor. Appl., 1988, 22 (4), pp. 447-459. Zbl0664.68046MR984586
  19. 19. S. LANG, Algebra, Addison-Wesley, Reading 1965. Zbl0193.34701MR197234
  20. 20. R. J. LIPTON, Polynomials with 0-1 coefficients that are hard to evaluate, in: Proc. 16th Ann. I.E.E.E. Symp. on Foundations of Comp. Sci., 1975, pp. 6-10. MR468316
  21. 21. R. J. LIPTON, Y. ZALCSTEIN, Word problems solvable in logspace, J. of the A.C.M., 1977, 24 (3), pp. 322-526. Zbl0359.68049MR445901
  22. 22. W. MAGNUS, A. KARASS, D. SOLITAR, Combinatorial group theory, Interscience Publishers, 1966. Zbl0138.25604
  23. 23. A. I. MAL'CEV, On certain classes of infinite solvable groups, Mat. Sb., 1951, 28, pp. 567-598. MR43088
  24. 24. D. MULLER, P. SCHUPP, Groups, the theory of ends, and context-free languages, J. Comput. System Sci., 1983, 26, pp. 295-310. Zbl0537.20011MR710250
  25. 25. J. E. SAVAGE, The complexity of computing, John Wiley, New York, 1976. Zbl0391.68025MR495205
  26. 26. H. U. SIMON, Word problems for groups and contextfree recognition, in: Proc. FCT79, Akademie-Verlag, Berlin, 1979. Zbl0413.68044MR563704
  27. 27. R. G. SWAN, Representations of polycyclic groups, Proc. Amer. Math. Soc., 1967, 18, pp. 573-574. Zbl0153.03801MR213442
  28. 28. TITS, Free subgroups in linear groups, J. Algebra, 1972, 20, pp. 250-270. Zbl0236.20032MR286898
  29. 29. C. TRETKOFF, Complexity, combinatorial group theory and the language of pulatators, Theoret. Comput. Sci., 56, 1988, pp. 253-275. Zbl0649.20032MR946201
  30. 30. S. WAACK, Tape complexity of word problems, in: Proc. FCT'81, Lecture Notes in Comput. Sci., 1981, 117, Springer-Verlag, Berlin, pp. 467-471. Zbl0498.03038MR653014
  31. 31. S. WAACK, Tape complexity of word problems, TR IMATH der AdW der DDR, Berlin 1981. Zbl0468.03021MR644148
  32. 32. S. WAACK, Raumkomplexität von Wortproblemen endlicher Gruppenpräsentationen, Dissertation A, Berlin 1983. 
  33. 33. S. WAACK, The parallel complexity of some constructions in combinatorial group theory, J. Inf. Process. Cybern., 1990, 26, 5/6, pp. 265-281. Zbl0698.68053MR1072920
  34. 34. I. WEGENER, The complexity of boolean functions, Wiley-Teubner Series in Comput. Sci., 1987. Zbl0623.94018MR905473
  35. 35. B. A. F. WEHRFRITZ, Infinite linear groups, Springer-Verlag, New York, 1973. Zbl0261.20038MR335656
  36. 36. O. ZARISKI, P. SAMUEL, Commutative algebra I, II, Van Nostrand, Princton, 1958, 1960. Zbl0081.26501

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.