An algorithm to compute the möbius function of the rotation lattice of binary trees
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1993)
- Volume: 27, Issue: 4, page 341-348
- ISSN: 0988-3754
Access Full Article
topHow to cite
topReferences
top- 1. M. K. BENNET and G. BIRKHOFF, Two families of Newman lattices, to appear. Zbl0810.06006MR1287019
- 2. A. BONNIN et J. M. PALLO, A-transformation dans les arbres n-aires, Discrete Math., 45, 1983, pp. 153-163. Zbl0504.68040MR704232
- 3. C. CHAMENI-NEMBUA and B. MONJARDET, Les treillis pseudocomplémentés finis, Europ. J. Combinatorics, 13, 1992, pp.89-107. Zbl0759.06010MR1158803
- 4. W. FELLER, An introduction to probability theory and its applications, John Wiley, New-York, 1957. Zbl0077.12201MR88081
- 5. H. FRIEDMAN and D. TAMARI, Problèmes d'associativité : une structure de treillis fini induite par une loi demi-associative, J. Combinat. Theory, 2, 1967, pp. 215-242. Zbl0158.01904MR238984
- 6. G. GRÄTZER, General lattice theory, Academic Press, New-York, 1978. Zbl0436.06001MR509213
- 7. C. GREENE, The Möbius function of a partially ordered set, in: Ordered sets, I. Rival éd., D. Reidel Publishing Company, 1982, pp. 555-581. Zbl0491.06004MR661306
- 8. P. HALL, The Eulerian functions of a group, Quart. J. Math. Oxford Ser., 1936, pp. 134-151. Zbl0014.10402JFM62.0082.02
- 9. S. HUANG and D. TAMARI, Problems of associativity: a simple proof for the lattice property of systems ordered by a semi-associative law, J. Combinat, Theory, (A) 13, 1972, pp. 7-13. Zbl0248.06003MR306064
- 10. G. MARKOWSKY, The factorization and representation of lattices, Trans. Amer. Math. Soc., 203, 1975, pp. 185-200. Zbl0302.06011MR360386
- 11. J. M. PALLO, Enumeration, ranking and unranking binary trees, Computer J., 29, 1986, pp. 171-175. Zbl0585.68066MR841678
- 12. J. M. PALLO, On the rotation distance in the lattice of binary trees, Inform. Process. Lett., 25, 1987, pp. 369-373. MR905781
- 13. J. M. PALLO, Some properties of the rotation lattice of binary trees, Computer J., 31, 1988, pp. 564-565. Zbl0654.06008MR974656
- 14. J. M. PALLO, A distance metric on binary trees using lattice-theoretic measures, Inform. Process. Lett., 34, 1990, pp. 113-116. Zbl0695.68017MR1059974
- 15. D. ROELANTS van BARONAIGIEN and F. RUSKEY, A Hamilton path in the rotation lattice of binary trees, Congr. Numer., 59, 1987, pp. 313-318. Zbl0647.05038MR944971
- 16. G. C. ROTA, On the foundations of combinatorial theory I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie, 2, 1964, pp. 340-368 Zbl0121.02406MR174487
- 17. D. D. SLEATOR, R. E. TARJAN and W. P. THURSTON, Rotation distance, triangulations and hyperbolic geometry, Journal of the American Mathematical Society, 1988, pp. 647-681. Zbl0653.51017MR928904