An algorithm to compute the möbius function of the rotation lattice of binary trees

J. M. Pallo

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1993)

  • Volume: 27, Issue: 4, page 341-348
  • ISSN: 0988-3754

How to cite

top

Pallo, J. M.. "An algorithm to compute the möbius function of the rotation lattice of binary trees." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 27.4 (1993): 341-348. <http://eudml.org/doc/92455>.

@article{Pallo1993,
author = {Pallo, J. M.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {rotation; lattice; Möbius function},
language = {eng},
number = {4},
pages = {341-348},
publisher = {EDP-Sciences},
title = {An algorithm to compute the möbius function of the rotation lattice of binary trees},
url = {http://eudml.org/doc/92455},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Pallo, J. M.
TI - An algorithm to compute the möbius function of the rotation lattice of binary trees
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1993
PB - EDP-Sciences
VL - 27
IS - 4
SP - 341
EP - 348
LA - eng
KW - rotation; lattice; Möbius function
UR - http://eudml.org/doc/92455
ER -

References

top
  1. 1. M. K. BENNET and G. BIRKHOFF, Two families of Newman lattices, to appear. Zbl0810.06006MR1287019
  2. 2. A. BONNIN et J. M. PALLO, A-transformation dans les arbres n-aires, Discrete Math., 45, 1983, pp. 153-163. Zbl0504.68040MR704232
  3. 3. C. CHAMENI-NEMBUA and B. MONJARDET, Les treillis pseudocomplémentés finis, Europ. J. Combinatorics, 13, 1992, pp.89-107. Zbl0759.06010MR1158803
  4. 4. W. FELLER, An introduction to probability theory and its applications, John Wiley, New-York, 1957. Zbl0077.12201MR88081
  5. 5. H. FRIEDMAN and D. TAMARI, Problèmes d'associativité : une structure de treillis fini induite par une loi demi-associative, J. Combinat. Theory, 2, 1967, pp. 215-242. Zbl0158.01904MR238984
  6. 6. G. GRÄTZER, General lattice theory, Academic Press, New-York, 1978. Zbl0436.06001MR509213
  7. 7. C. GREENE, The Möbius function of a partially ordered set, in: Ordered sets, I. Rival éd., D. Reidel Publishing Company, 1982, pp. 555-581. Zbl0491.06004MR661306
  8. 8. P. HALL, The Eulerian functions of a group, Quart. J. Math. Oxford Ser., 1936, pp. 134-151. Zbl0014.10402JFM62.0082.02
  9. 9. S. HUANG and D. TAMARI, Problems of associativity: a simple proof for the lattice property of systems ordered by a semi-associative law, J. Combinat, Theory, (A) 13, 1972, pp. 7-13. Zbl0248.06003MR306064
  10. 10. G. MARKOWSKY, The factorization and representation of lattices, Trans. Amer. Math. Soc., 203, 1975, pp. 185-200. Zbl0302.06011MR360386
  11. 11. J. M. PALLO, Enumeration, ranking and unranking binary trees, Computer J., 29, 1986, pp. 171-175. Zbl0585.68066MR841678
  12. 12. J. M. PALLO, On the rotation distance in the lattice of binary trees, Inform. Process. Lett., 25, 1987, pp. 369-373. MR905781
  13. 13. J. M. PALLO, Some properties of the rotation lattice of binary trees, Computer J., 31, 1988, pp. 564-565. Zbl0654.06008MR974656
  14. 14. J. M. PALLO, A distance metric on binary trees using lattice-theoretic measures, Inform. Process. Lett., 34, 1990, pp. 113-116. Zbl0695.68017MR1059974
  15. 15. D. ROELANTS van BARONAIGIEN and F. RUSKEY, A Hamilton path in the rotation lattice of binary trees, Congr. Numer., 59, 1987, pp. 313-318. Zbl0647.05038MR944971
  16. 16. G. C. ROTA, On the foundations of combinatorial theory I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie, 2, 1964, pp. 340-368 Zbl0121.02406MR174487
  17. 17. D. D. SLEATOR, R. E. TARJAN and W. P. THURSTON, Rotation distance, triangulations and hyperbolic geometry, Journal of the American Mathematical Society, 1988, pp. 647-681. Zbl0653.51017MR928904

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.