Congestion optimale du plongement de l’hypercube H ( n ) dans la chaîne P ( 2 n )

A. Bel Hala

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1993)

  • Volume: 27, Issue: 5, page 465-481
  • ISSN: 0988-3754

How to cite

top

Bel Hala, A.. "Congestion optimale du plongement de l’hypercube $H (n)$ dans la chaîne $P(2^n)$." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 27.5 (1993): 465-481. <http://eudml.org/doc/92461>.

@article{BelHala1993,
author = {Bel Hala, A.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
language = {fre},
number = {5},
pages = {465-481},
publisher = {EDP-Sciences},
title = {Congestion optimale du plongement de l’hypercube $H (n)$ dans la chaîne $P(2^n)$},
url = {http://eudml.org/doc/92461},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Bel Hala, A.
TI - Congestion optimale du plongement de l’hypercube $H (n)$ dans la chaîne $P(2^n)$
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1993
PB - EDP-Sciences
VL - 27
IS - 5
SP - 465
EP - 481
LA - fre
UR - http://eudml.org/doc/92461
ER -

References

top
  1. 1. S. N. BHATT et F. T. LEIGHTON, A framework for solving VLSI graph layout problems, J. Comput. System Sci., 28, 1984, p. 300-343. Zbl0543.68052MR760549
  2. 2. P. Z. CHINN, J. CHVÁTALOVÁ, A. K. DEWDNEY et N. E. GIBBS, The bandwidth problem for graphs and matrices-A survey, J. Graph Theory, 6, 1982, p. 223-254. Zbl0494.05057MR666794
  3. 3. F. R. K. CHUNG, Labelings of graphs, in Selected Topics in Graph Theory, III (L. Beineke and R. Wilson, Eds.), Academic Press, 1988, p. 151-168. Zbl0656.05058MR1205400
  4. 4. F. R. K. CHUNG et P. D. SEYMOUR, manuscript, Bell Communication Research, Some results on the bandwith and the cutwidth of a graph, 1987. 
  5. 5. L. H. HARPER, Optimal assignments of numbers to vertices, J. Soc. Indust. Appl. Math. 9 12, 1964, p. 131-135. Zbl0222.94004MR162737
  6. 6. L. H. HARPER, Optimal numberings and isoperimetric problems on graphs, J. of Combinatorial Theory, 1, 1966, p. 385-393. Zbl0158.20802MR200192
  7. 7. J. HROMKOVIC, V. MULLER, O. SYKORA et I. VRTO, On embedding in cycles (to appear). Zbl0826.68012MR1331730
  8. 8. TEN-HWANG LAI et Alan P. SPRAGUE, Placement of the Processors of a Hypercube, IEEE-Trans.-Comput. 40, 6, 1991, p. 714-722. MR1113977
  9. 9. LEIGHTON, MAGGO, RAO, Universal packet routing algorithms, 29th FOCS, 1988, p. 256-271. 
  10. 10. F. MAKEDON, C. H. PAPADIMITRIOU et I. H. SUDBOROUGH, Topological bandwidth, SIAM J. Algebraic Discrete Methods, 6, 1985, p. 418-444. Zbl0573.05052MR791172
  11. 11. B. MONIEN et I. H. SUDBROUGH, Comparing Interconnection Networks, Proceedings of the 13th Symposium on mathematical Foundations of Computer Science, 1988. 
  12. 12. B. MONIEN et I. H. SUDBROUGH, Embedding one Interconnection Network in Another, Computing Suppl., 7, 1990, p. 257-282. Zbl0699.68017MR1059934

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.