Autonomous posets and quantales

G. F. Mascari; F. Pucci

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1993)

  • Volume: 27, Issue: 6, page 483-501
  • ISSN: 0988-3754

How to cite

top

Mascari, G. F., and Pucci, F.. "Autonomous posets and quantales." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 27.6 (1993): 483-501. <http://eudml.org/doc/92462>.

@article{Mascari1993,
author = {Mascari, G. F., Pucci, F.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {non-commutativity; phase space quantale; semantics; linear logic; autonomous quantales; completion; autonomous posets; representation theorem},
language = {eng},
number = {6},
pages = {483-501},
publisher = {EDP-Sciences},
title = {Autonomous posets and quantales},
url = {http://eudml.org/doc/92462},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Mascari, G. F.
AU - Pucci, F.
TI - Autonomous posets and quantales
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1993
PB - EDP-Sciences
VL - 27
IS - 6
SP - 483
EP - 501
LA - eng
KW - non-commutativity; phase space quantale; semantics; linear logic; autonomous quantales; completion; autonomous posets; representation theorem
UR - http://eudml.org/doc/92462
ER -

References

top
  1. 1. M. ABADI and G. D. PLOTKIN, A Logical view of composition and refinement, Theoretical Computer Science, 1993, 114, pp. 3-30. Zbl0778.68061MR1224510
  2. 2. S. ABRAMSKY and S. VICKERS, Quantales, observational logic and process semantics, Imperial College Research Report DOC 90/1, January 1990. Zbl0823.06011
  3. 3. V. M. ABRUSCI, Phase semantics and sequent calculus for pure noncommutative classical linear propositional logic, J. of Symbolic Logic, 1991, 56, No. 4. Zbl0746.03044MR1136467
  4. 4. G. AMIOT, Sémantique des phases de la logique linéaire du second ordre, Prépublication n° 21 de l'Equipe de Logique Mathématique, Université Paris-VII, février 1991. 
  5. 5. A. AVRON, The semantics and proff theory of Linear Logic, Theoretical Computer Science, 1988, 57. Zbl0652.03018MR960102
  6. 6. M. BARR, *-Autonomous Categories, L.N.M. 752, Springer, 1979. Zbl0415.18008MR550878
  7. 7. J. VAN BENTHEM, Logic in action, North Holland, 1991. Zbl0717.03001MR1102016
  8. 8. U. BERNI-CANANI, F. BORCEUX, R. SUCCI-CRUCIANI and G. VAN DEN BOSSCHE, Etale maps of quantales, Bull. Soc. Math. Belgique, 1989, XLI, (2). Zbl0687.06005MR1031749
  9. 9. G. BIRKOFF, Lattice Theory, A.M.S. Colloq. Publications, 1967, 25. Zbl0153.02501
  10. 10. C. BROWN, Petri nets as Quantales, Technical Report ECS LFCS 89-96, University of Edinburgh, 1989. 
  11. 11. M. DAM, Relevance logic and concurrent computation, in Proc. 3th L.I.C.S. I.E.E.E., 1978. 
  12. 12. DAY, Category Seminar, Sydney 1972/3, L.N.M. 420, Springer Verlag. 
  13. 13. J. M. DUNN, Gaggle theory: an abstraction of Galois connections and residuation, with applications to negation, implication, and various logical operators, L.N.A.I, 478, Springer Verlag, 1990. Zbl0814.03044MR1099620
  14. 14. U. ENGBERG and G. WINSKEL, Petri Nets as Models of Linear Logic, L.N.C.S. 431, 1991. Zbl0757.03005MR1075028
  15. 15. P. J. FREYD and A. SCEDROV, Categories, Allegories, North Holland, 1990. Zbl0698.18002MR1071176
  16. 16. J. GALLIER, Equality in Linear Logic, Draft paper, 1991. 
  17. 17. J. Y. GIRARD, Linear Logic, Theoretical Computer Science, 1987, 50, pp. 1-102. Zbl0625.03037MR899269
  18. 18. M. C. B. HENNESSY and G. D. PLOTKIN, Full abstraction for a simple parallel programming language, in Proc. M.F.C.S. 79, L.N.C.S. 74, Springer Verlag, 1979. Zbl0457.68006MR570978
  19. 19. W. H. HESSELINK, Axioms and Models of Linear Logic, Formal Aspects of Computing, 1990, 2, pp. 139-166. Zbl0703.03010
  20. 20. C. A. R. HOARE and HE JIFENG, The weakest prespecification, Information Processing Letters, 1987, 24. Zbl0622.68025MR882642
  21. 21. P. T. JOHNSTONE, Stone spaces, Cambridge University Press, 1982. Zbl0499.54001MR698074
  22. 22. A. JOYAL and M. TIERNEY, An Extension of the Galois Theory of Grothendieck, Amer. Math. Soc. Memoirs No. 309, 1984. Zbl0541.18002MR756176
  23. 23. J. LAMBEK, Categorial and categorical grammars, in Categorial Grammars and Natural Language Structures, R. T. OEHRLE et al. (D. Reidel 1988) Ed., pp. 297-317. 
  24. 24. J. LAMBEK, From categorical grammar to bilinear logic, in Substructural logics, K. DOZEN and P. SCHROEDER-HEISTER Eds. (to appear). Zbl0941.03518MR1283198
  25. 25. J. LILIUS, High-level Nets and Linear Logic, L.N.C.S. 616, Springer Verlag, 1992. MR1253098
  26. 26. S. MIKULAS, The completeness of the Lambek calculus with respect to relational semantics, Institute for Language, Logic and Information, Prepublication 92-03. 
  27. 27. S. NIEFFIELD and K. ROSENTHAL, Constructing Locales from a Quantale, Mathematical Proc. of the Cambridge Philosophical Soc., 1988, 104. Zbl0658.06007
  28. 28. E. ORLOWSKA, Algebraic aspects of the relational knowledge representation modal relation algebras, L.N.C.S. 619, Springer, 1992. MR1231572
  29. 29. W. PRATT, Origins of the Calculus of Binary Relations, L.I.C.S., 1992. 
  30. 30. F. PUCCI, C*-Algebre, Logiche e Computazione, Tesi di Laurea in Mathematica, Università di Roma La Sapienza, A.A. 1989-1990. 
  31. 31. K. I. ROSENTHAL, Quantales and their applications, Pitman Research Notes in Mathematics Series, Longman Scientific and Technical, 1990. Zbl0703.06007MR1088258
  32. 32. K. I. ROSENTHAL, Free quantaloids, J. of Pure and Applied Algebra, 1991, 72. Zbl0729.18007MR1115568
  33. 33. K. I. ROSENTHAL, Girard quantaloids, Mathematical Structures in Computer Science, 1992, 2. Zbl0761.18008MR1159501
  34. 34. B. STENSTROM, Rings of Quotients, Springer Verlag, 1975. Zbl0296.16001MR389953
  35. 35. S. VICKERS, Topology via Logic, Cambridge University Press, Cambridge, 1989. Zbl0668.54001MR1002193
  36. 36. M. WARD and R. P. DILWORTH, Residuated Lattices, Trans. A.M.S., 1939, 45. Zbl0021.10801JFM65.0084.01
  37. 37. D. N. YETTER, Quantales and non commutative linear logic, J. of Symbolic Logic, 1990, 55. Zbl0701.03026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.