A hierarchy that does not collapse : alternations in low level space
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1994)
- Volume: 28, Issue: 5, page 465-512
- ISSN: 0988-3754
Access Full Article
topHow to cite
topGeffert, Viliam. "A hierarchy that does not collapse : alternations in low level space." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 28.5 (1994): 465-512. <http://eudml.org/doc/92491>.
@article{Geffert1994,
author = {Geffert, Viliam},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {alternation hierarchy},
language = {eng},
number = {5},
pages = {465-512},
publisher = {EDP-Sciences},
title = {A hierarchy that does not collapse : alternations in low level space},
url = {http://eudml.org/doc/92491},
volume = {28},
year = {1994},
}
TY - JOUR
AU - Geffert, Viliam
TI - A hierarchy that does not collapse : alternations in low level space
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1994
PB - EDP-Sciences
VL - 28
IS - 5
SP - 465
EP - 512
LA - eng
KW - alternation hierarchy
UR - http://eudml.org/doc/92491
ER -
References
top- 1. L. BABAI and S. MORAN, Arthur-Merlin games: A randomized proof-system, and a hierarchy of complexity classes, J. Comput. Syst. Sciences, 1988, 36, pp. 254-276. Zbl0652.03029MR950433
- 2. T. BAKER, J. GILL and R. SOLOVAY, Relativizations of the P =?NP question, SIAM J. Comput., 1975, 4(4), pp. 431-442. Zbl0323.68033MR395311
- 3. B. von BRAUNMUHL, Alternation for two-way machines with sublogarithmic space, to appear in Proc. of STACS'93. Zbl0797.68056MR1249277
- 4. B. von BRAUNMUHL, R. GENGLER and R. RETTINGER, The alternation hierarchy for machines with sublogarithmic space is infinite, Research Report 8589-CS, University of Bonn, 1993. Zbl0796.68099MR1288535
- 5. A. K. CHANDRA, D. KOZEN and L. J. STOCKMEYER, Alternation, J. Assoc. Comput. Mach., 1981, 28, pp.114-133. Zbl0473.68043MR603186
- 6. J. H. CHANG, O. H. IBARRA, B. RAVIKUMAR and L. BERMAN, Some observations concerning alternating Turing machines using small space, Inform. Process. Lett., 1987, 25, pp.1-9 (Erratum: 27, 1988, 53). Zbl0635.68040MR896396
- 7. A. R. FREEDMAN and R. E. LADNER, Space bounds for processing contentless inputs, J. Comput. Syst. Sciences, 1975, 11, pp.118-128. Zbl0307.68036MR398161
- 8. V. GEFFERT, Nondeterministic computations in sublogarithmic space and space constructibility, SIAM J. Comput., 1991, 20(3), pp. 484-498. Zbl0762.68022MR1094527
- 9. V. GEFFERT, Sublogarithmic ∑2-SPACE is not closed under complement and other separation results, RAIRO Theoretical Informaties and Applications, 1993, 27(4), pp. 349-366. Zbl0804.68047MR1238056
- 10. V. GEFFERT, Tally versions of the Savitch and Immerman-Szelepcsényi theorems for sublogarithmic space, SIAM J. Comput., 1993, 22(1), pp.102-113. Zbl0766.68039MR1202863
- 11. J. HARTMANIS, The collapsing hierarchies, EATCS Bulletin, 1987, 33, pp. 26-39. Zbl0661.68047
- 12. L. A. HEMACHANDRA, The strong exponential hierarchy collapses, Proc. of 19th ACM STOC Conference, 1987, pp.110-122.
- 13. N. IMMERMAN, Nondeterministic space is closed under complement, SIAM J. Comput., 1988, 17, pp. 935-938. Zbl0668.68056MR961049
- 14. K. IWAMA, ASPACE( o (log log)) is regular, SIAM J. Comput., 1983, 22(1), pp. 136-146. Zbl0767.68039MR1202865
- 15. B. JENNER, B. KIRSIG and K. LANGE, The logarithmic alternation hierarchy collapses: A∑L2 = AπL2, Information and Computation, 1989, 80, pp. 269-288. Zbl0668.68055MR984485
- 16. M. LIŚKIEWICZ and R. REISCHUK, Separating the lower levels of the sublogarithmic space hierarchy, to appear in Proc. of STACS'93. Zbl0799.68092MR1249278
- 17. M. LIŚKIEWICZ and R. REISCHUK, The sublogarithmic space hierarchy is infinite, Technical Report, Technical University of Darmstadt, 1993. Zbl0799.68092
- 18. D. RANJAN, R. CHANG and J. HARTMANIS, Space bounded computations: Review and new separation results, Theoret. Comp. Sci., 1991, 80, pp. 289-302. Zbl0745.68051MR1117067
- 19. U. SCHÖNING and K. WAGNER, Collapsing oracle hiérarchies, census fonctions, and logarithmically many queries, Proc. of STACS'88, Springer-Verlag, LNCS, 294, 1988, pp. 91-97. Zbl0648.68065MR935790
- 20. J. SEIFERAS, A note on notions of tape constructibility, Technical Report CSD-TR-187, Pennsylvania State University, 1976.
- 21. R. E. STEARNS, J. HARTMANIS and P. M. LEWIS II, Hierarchies of memory limited computations, Proc. of 1965 IEEE Conference Record on Switching Circuit Theory and Logical Design, 1965, pp. 179-190. Zbl0229.02033
- 22. R. SZELEPCSÉNYI, The method of forced enumeration for nondeterministic automata, Acta Informatica, 1988, 26, pp. 279-284. Zbl0638.68046MR975334
- 23. A. SZEPIETOWSKI, Some remarks on the alternating hierarchy and closure under complement for sublogarithmic space, Information Processing Letters, 1989, 33, pp. 73-78. Zbl0684.68062MR1031596
- 24. S. TODA, ∑2-SPACE (n) is closed under complement J. Comput Syst. Sciences, 1987, 35, pp. 145-152. Zbl0654.68053MR910209
- 25. A. YAO, Separating the polynomial time hierarchy by oracles, Proc. of 26th FOCS, 1985, pp. 1-10.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.