A space lower bound for acceptance by one-way Π 2 -alternating machines

Viliam Geffert; Norbert Popély

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2000)

  • Volume: 34, Issue: 5, page 357-372
  • ISSN: 0988-3754

How to cite

top

Geffert, Viliam, and Popély, Norbert. "A space lower bound for acceptance by one-way $\Pi _2$-alternating machines." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 34.5 (2000): 357-372. <http://eudml.org/doc/92640>.

@article{Geffert2000,
author = {Geffert, Viliam, Popély, Norbert},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {-alternating Turing machines},
language = {eng},
number = {5},
pages = {357-372},
publisher = {EDP-Sciences},
title = {A space lower bound for acceptance by one-way $\Pi _2$-alternating machines},
url = {http://eudml.org/doc/92640},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Geffert, Viliam
AU - Popély, Norbert
TI - A space lower bound for acceptance by one-way $\Pi _2$-alternating machines
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2000
PB - EDP-Sciences
VL - 34
IS - 5
SP - 357
EP - 372
LA - eng
KW - -alternating Turing machines
UR - http://eudml.org/doc/92640
ER -

References

top
  1. [1] M. Alberts, Space complexity of alternating Turing machines, in Proc. Fund. Comput. Theory. Springer-Verlag, Lecture Notes in Comput Sci. 199 (1985) 1-7. Zbl0574.68040MR821218
  2. [2] H. Alt and K. Mehlhorn, A language over a one symbol alphabet requiring only O (log log n) space. SIGACT News 7 (1975) 31-33. 
  3. [3] A. Bertoni, C. Mereghetti and G. Pighizzini, Strong optimal lower bounds for Turing machines that accept nonregular languages, in Proc. Math. Found. Comput. Sci. Springer-Verlag, Lecture Notes in Comput. Sci. 969 (1995) 309-18. Zbl1193.68119MR1467265
  4. [4] A. Bertoni, C. Mereghetti and G. Pighizzini, Space and reversal complexity of nonregular languages, Technical Report, University of Milano (1998). Zbl0810.68089
  5. [5] A. K. Chandra, D. C. Kozen and L. J. Stockmeyer, Alternation. J. Assoc. Comput. Math. 28 (1981) 114-33. Zbl0473.68043MR603186
  6. [6] P. Van Emde Boas, Machine models and simulations, edited by J. van Leeuwen, Handbook of Theoretical Computer Science. Elsevier Science (1989). Zbl0900.68265MR1127167
  7. [7] R. Freivalds, On the work time of deterministic and nondeterministic Turing machines. Latv. Mat. Ezhegodnik 23 (1979) 158-65 (in Russian). Zbl0462.68028MR562395
  8. [8] V. Geffert, Nondeterministic computations in sublogarithmic space and space constructibility. SIAM J. Comput. 20 (1991) 484-98. Zbl0762.68022MR1094527
  9. [9] V. Geffert, A hierarchy that does not collapse: Alternations in low level space. RAIRO: Theoret Informatics Appl. 28 (1994) 465-512. Zbl0884.68054MR1296648
  10. [10] V. Geffert, C. Mereghetti and G. Pighizzini, Sublogarithmic bounds on space and reversals. SIAM J. Comput. 28 (1999) 325-40. Zbl0914.68068MR1630493
  11. [11] J. Hartmanis, P. M. Lewis II and R. E. Stearns, Hierarchies of memory limited computations, in IEEE Conf. Record on Switching Circuit Theory and Logical Design (1965) 179-90. Zbl0229.02033
  12. [12] J. Hartmanis, P. M. Lewis II and R. E. Stearns, Memory bounds for recognition of context-free and context-sensitive languages, in IEEE Conf. Record on Switching Circuit Theory and Logical Design (1965) 191-202. Zbl0272.68054
  13. [13] J. E. Hopcroft and J. D. Ullman, Some results on tape-bounded Turing machines. J. Assoc. Comput. Mach. 16 (1969) 168-77. Zbl0188.33501
  14. [14] J. HromkoviČ, B. Rovan and A. Slobodová, Deterministic versus nondeterministic space in terms of synchronized alternating machines. Theoret Comput. Sci. 132 (1994) 319-36. Zbl0821.68056
  15. [15] K. Iwama, ASPACE(o(log log n)) is regular. SIAM J. Comput. 22 (1993) 136-46. Zbl0767.68039
  16. [16] B. E. Ladner, R. J. Lipton and L. R. Stockmeyer, Alternation bounded auxiliary pushdown automata. Inform. and Control 62 (1984) 93-108. Zbl0589.68058
  17. [17] C. Mereghetti and G. Pighizzini, A remark on middle space bounded alternating Turing machines. Inform. Process. Lett. 56 (1995) 229-32. Zbl0875.68395
  18. [18] C. Mereghetti and G. Pighizzini, Optimal simulations between unary automata, in Proc. Symp. Theoret. Aspects Comput. Sci. Springer-Verlag, Lecture Notes in Comput Sci. 1373 (1998) 139-149 (to appear in SIAM J. Comput). Zbl0980.68048MR1650797
  19. [19] W. J. Savitch, Relationships between nondeterministic and deterministic tape complexities. J. Comput. System Sci. 4 (1970) 177-92. Zbl0188.33502MR266702
  20. [20] I. H. Sudborough, Efficient algorithms for path system problems and applications to alternating and time-space complexity classes, in Proc. IEEE Symp. Found, of Comput. Sci. (1980) 62-73. 
  21. [21] A. Szepietowski, Remarks on languages acceptable in log log n space. Inform. Process Lett. 27 (1988) 201-3. Zbl0652.68055MR935245

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.