Mineurs d'arbres avec racines

B. Courcelle; A. Pariès

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1995)

  • Volume: 29, Issue: 5, page 401-422
  • ISSN: 0988-3754

How to cite

top

Courcelle, B., and Pariès, A.. "Mineurs d'arbres avec racines." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 29.5 (1995): 401-422. <http://eudml.org/doc/92515>.

@article{Courcelle1995,
author = {Courcelle, B., Pariès, A.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {NP-completeness},
language = {fre},
number = {5},
pages = {401-422},
publisher = {EDP-Sciences},
title = {Mineurs d'arbres avec racines},
url = {http://eudml.org/doc/92515},
volume = {29},
year = {1995},
}

TY - JOUR
AU - Courcelle, B.
AU - Pariès, A.
TI - Mineurs d'arbres avec racines
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1995
PB - EDP-Sciences
VL - 29
IS - 5
SP - 401
EP - 422
LA - fre
KW - NP-completeness
UR - http://eudml.org/doc/92515
ER -

References

top
  1. 1. A. AHO, J. HOPCROFT et J. ULLMAN, The design and analysis of computer algorithms, Addison-Wesley, 1974. Zbl0326.68005MR413592
  2. 2. I. ANDERSON, Combinatorics offinite sets, Clarendon Press, Oxford, 1987. Zbl0604.05001MR892525
  3. 3. S. ARNBORG, A. PROSKUROWSKI et D. CORNEIL, Forbidden minors characterization of partial 3-trees, Discrete Mathematics, 1990, 80, p. 1-19. Zbl0701.05016MR1045920
  4. 4. N. DE BRUIN, C. A. VAN EBBENHORST et D. KRUYSWIJK, On the set of divisors of a number, Nieuw Arch. Wisk, 1952, 23, p. 191-193. Zbl0043.04301MR43115
  5. 5. M. FELLOWS et M. LANGSTON, An analogue of the Myhill-Nerode theorem and its use in computing finite basis characterization, Proceedings of "Foundations of Computer Science", 1989, p. 520-525. 
  6. 6. M. FELLOWS, The Roberston-Seymour theorems: A survey of applications, A.M.S., Contemporary Mathematics, 1989, 89, p. 1-17. Zbl0692.68030MR1006472
  7. 7. G. A. IKORONG, Arbres et largeur linéaires des graphes, Thèse, Université Joseph Fourier-Grenoble-I, 1992. 
  8. 8. J. MATOUSEK et R. THOMAS, On the complexity of finding iso- and other morphisms for partial k-trees, Discrete Mathematics, 1992, 108, p. 343-364. Zbl0764.68128MR1189856
  9. 9. A. PROSKUROWSKI, Graph reductions and techniques for finding minimal forbidden minors, dans Graph structure theory, N. ROBERTSON et P. SEYMOUR Eds., A.M.S., Contemporary Mathematics, 1993, 147, p. 591-600. Zbl0787.05032MR1224733
  10. 10. N. ROBERSTON et P. SEYMOUR, Graph minors I: Excluding a forest, Journal of Combinatorial Theory, Series B, 1983, 35, p. 39-61. Zbl0521.05062MR723569
  11. 11. N. ROBERTSON et P. SEYMOUR, Graph minors II: Algorithmic aspects of tree-width, Journal of algorithms, 1986, 7, p. 309-322. Zbl0611.05017MR855559
  12. 12. N. ROBERTSON et P. SEYMOUR, Graph minors XIII: The disjoint paths problem, septembre 1986. Zbl0823.05038
  13. 13. N. ROBERTSON et P. SEYMOUR, Graph minors XX: Wagner's conjecture, septembre 1988. Zbl1061.05088

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.