Mineurs d'arbres avec racines
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1995)
- Volume: 29, Issue: 5, page 401-422
- ISSN: 0988-3754
Access Full Article
topHow to cite
topCourcelle, B., and Pariès, A.. "Mineurs d'arbres avec racines." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 29.5 (1995): 401-422. <http://eudml.org/doc/92515>.
@article{Courcelle1995,
author = {Courcelle, B., Pariès, A.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {NP-completeness},
language = {fre},
number = {5},
pages = {401-422},
publisher = {EDP-Sciences},
title = {Mineurs d'arbres avec racines},
url = {http://eudml.org/doc/92515},
volume = {29},
year = {1995},
}
TY - JOUR
AU - Courcelle, B.
AU - Pariès, A.
TI - Mineurs d'arbres avec racines
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1995
PB - EDP-Sciences
VL - 29
IS - 5
SP - 401
EP - 422
LA - fre
KW - NP-completeness
UR - http://eudml.org/doc/92515
ER -
References
top- 1. A. AHO, J. HOPCROFT et J. ULLMAN, The design and analysis of computer algorithms, Addison-Wesley, 1974. Zbl0326.68005MR413592
- 2. I. ANDERSON, Combinatorics offinite sets, Clarendon Press, Oxford, 1987. Zbl0604.05001MR892525
- 3. S. ARNBORG, A. PROSKUROWSKI et D. CORNEIL, Forbidden minors characterization of partial 3-trees, Discrete Mathematics, 1990, 80, p. 1-19. Zbl0701.05016MR1045920
- 4. N. DE BRUIN, C. A. VAN EBBENHORST et D. KRUYSWIJK, On the set of divisors of a number, Nieuw Arch. Wisk, 1952, 23, p. 191-193. Zbl0043.04301MR43115
- 5. M. FELLOWS et M. LANGSTON, An analogue of the Myhill-Nerode theorem and its use in computing finite basis characterization, Proceedings of "Foundations of Computer Science", 1989, p. 520-525.
- 6. M. FELLOWS, The Roberston-Seymour theorems: A survey of applications, A.M.S., Contemporary Mathematics, 1989, 89, p. 1-17. Zbl0692.68030MR1006472
- 7. G. A. IKORONG, Arbres et largeur linéaires des graphes, Thèse, Université Joseph Fourier-Grenoble-I, 1992.
- 8. J. MATOUSEK et R. THOMAS, On the complexity of finding iso- and other morphisms for partial k-trees, Discrete Mathematics, 1992, 108, p. 343-364. Zbl0764.68128MR1189856
- 9. A. PROSKUROWSKI, Graph reductions and techniques for finding minimal forbidden minors, dans Graph structure theory, N. ROBERTSON et P. SEYMOUR Eds., A.M.S., Contemporary Mathematics, 1993, 147, p. 591-600. Zbl0787.05032MR1224733
- 10. N. ROBERSTON et P. SEYMOUR, Graph minors I: Excluding a forest, Journal of Combinatorial Theory, Series B, 1983, 35, p. 39-61. Zbl0521.05062MR723569
- 11. N. ROBERTSON et P. SEYMOUR, Graph minors II: Algorithmic aspects of tree-width, Journal of algorithms, 1986, 7, p. 309-322. Zbl0611.05017MR855559
- 12. N. ROBERTSON et P. SEYMOUR, Graph minors XIII: The disjoint paths problem, septembre 1986. Zbl0823.05038
- 13. N. ROBERTSON et P. SEYMOUR, Graph minors XX: Wagner's conjecture, septembre 1988. Zbl1061.05088
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.