Cutwidth of the de Bruijn graph
André Raspaud; Ondrej Sýkora; Imrich Vrt'o
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1995)
- Volume: 29, Issue: 6, page 509-514
- ISSN: 0988-3754
Access Full Article
topHow to cite
topRaspaud, André, Sýkora, Ondrej, and Vrt'o, Imrich. "Cutwidth of the de Bruijn graph." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 29.6 (1995): 509-514. <http://eudml.org/doc/92521>.
@article{Raspaud1995,
author = {Raspaud, André, Sýkora, Ondrej, Vrt'o, Imrich},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {upper bound; cutwidth; de Bruijn graph},
language = {eng},
number = {6},
pages = {509-514},
publisher = {EDP-Sciences},
title = {Cutwidth of the de Bruijn graph},
url = {http://eudml.org/doc/92521},
volume = {29},
year = {1995},
}
TY - JOUR
AU - Raspaud, André
AU - Sýkora, Ondrej
AU - Vrt'o, Imrich
TI - Cutwidth of the de Bruijn graph
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1995
PB - EDP-Sciences
VL - 29
IS - 6
SP - 509
EP - 514
LA - eng
KW - upper bound; cutwidth; de Bruijn graph
UR - http://eudml.org/doc/92521
ER -
References
top- 1. D. BARTH, F. PELLEGRINI, A. RASPAUD, and J. ROMAN, On bandwidth, cutwidth and quotient graphs, RAIRO Informatique, Théorique et Applications, to appear. Zbl0881.68089MR1377027
- 2. A. BEL HALA, Congestion optimale du plongement de l'ypercube H (n) dans la chaine P (2n), RAIRO Informatique, Théorique et Applications, 1993, 27, pp. 1-17. Zbl0803.68091MR1252607
- 3. G. BILARDI and F. PREPARATA, Area-time lower bound techniques with application to sorting, Algorithmica, 1986, 1, pp. 65-91. Zbl0622.68044MR833119
- 4. G. BREBNER, Relating routing graphs and two-dimensional grids, in: Proc. VLSI: Algorithms and Architectures, North Holland, 1985. Zbl0564.94019MR803728
- 5. D. KLEITMAN, F. T. LEIGHTON, M. LEPLEY and G. L. MILLER, New layouts for the shuffle-exchange graph, in: Proc. 13th Annual ACM Symposium on Theory of Computing, ACM Press, 1981, pp. 278-292.
- 6. T. LENGAUER, Upper and lower bounds for the min-cut linear arrangements problem on trees, SIAM J. Algebraic and Discrete Methods, 1982, 3, pp. 99-113. Zbl0489.68060MR644961
- 7. A. D. LOPEZ and H. F. S. LAW, A dense gate matrix layout method for MOS VLSI, IEEE Trans. Electron. Devices, 1980, 27, pp. 1671-1675.
- 8. K. NAKANO, Linear layout of generalized hypercubes, in: Proc. 19th Intl. Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science 790, Springer Verlag, Berlin, 1994, pp. 364-375. MR1286286
- 9. C. D. THOMPSON, Area-time complexity for VLSI, in: Proc. 11th Annual ACM Symposium on Theory of Computing, 1979, pp. 81-88. MR564622
- 10. J. D. ULLMAN, Computational Aspects of VLSI, Computer Science Press, Rockville, 1984. Zbl0539.68021
- 11. M. YANNAKAKIS, A polynomial algorithm for the Min Cut Linear Arrangement of trees, J. ACM, 1985, 32, pp. 950-988. Zbl0633.68063MR810346
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.