On the semidirect product of the pseudovariety of semilattices by a locally finite pseudovariety of groups

F. Blanchet-Sadri

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1997)

  • Volume: 31, Issue: 3, page 237-250
  • ISSN: 0988-3754

How to cite

top

Blanchet-Sadri, F.. "On the semidirect product of the pseudovariety of semilattices by a locally finite pseudovariety of groups." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 31.3 (1997): 237-250. <http://eudml.org/doc/92560>.

@article{Blanchet1997,
author = {Blanchet-Sadri, F.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {pseudovariety of -groups},
language = {eng},
number = {3},
pages = {237-250},
publisher = {EDP-Sciences},
title = {On the semidirect product of the pseudovariety of semilattices by a locally finite pseudovariety of groups},
url = {http://eudml.org/doc/92560},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Blanchet-Sadri, F.
TI - On the semidirect product of the pseudovariety of semilattices by a locally finite pseudovariety of groups
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1997
PB - EDP-Sciences
VL - 31
IS - 3
SP - 237
EP - 250
LA - eng
KW - pseudovariety of -groups
UR - http://eudml.org/doc/92560
ER -

References

top
  1. 1. J. ALMEIDA, Semidirect products of pseudovarieties from the universal algebraist's point of view, Journal of Pure and Applied Algebra, 1989, 60, pp. 113-128. Zbl0687.20053MR1020712
  2. 2. J. ALMEIDA, Oniterated semidirect products of finite semilattices, Journal of Algebra, 1991, 142, pp. 239-254. Zbl0743.20056MR1125216
  3. 3. J. ALMEIDA, Semigrupos Finitos e Álgebra Universal (Institute of Mathematics and Statistics of the University of São Paulo, 1992), Finite Semigroups and Universal Algebra (World Scientific, Singapore, 1994). 
  4. 4. C. J. ASH, Finite semigroups with commuting idempotents, Journal of the Australian Mathematical Society, 1987, 43, pp. 81-90. Zbl0634.20032MR886805
  5. 5. F. BLANCHET-SADRI, Equations on the semidirect product of a finite semilattice by a J-trivial monoid of height k, RAIRO Informatique Théorique et Applications, 1995, 29, pp. 157-170. Zbl0833.68073MR1347591
  6. 6. F. BLANCHET-SADRI and X. H. ZHANG, Equations on the semidirect product of a finite semilattice by a finite commutative monoid, Semigroup Forum, 1994, 49, pp. 67-81. Zbl0816.20052MR1272864
  7. 7. S. BURRIS and H. P. SANKAPPANAVAR, A Course in Universal Algebra (Springer-Verlag, New York, 1981). Zbl0478.08001MR648287
  8. 8. S. EILENBERG, Automata, Languages, and Machines, A (Academic Press, NewYork, 1974), B (Academic Press, NewYork, 1976). MR530382
  9. 9. S. EILENBERG and M. P. SCHÜTZENBERGER, On pseudovarieties, Advances in Mathematics, 1976, 19, pp. 413-418. Zbl0351.20035MR401604
  10. 10. C. IRASTORZA, Base non finie de variétés, in STACS'85, Lecture Notes in Computer Science (Springer-Verlag), Berlin, 1985, 182, pp. 180-186. Zbl0572.20041MR786881
  11. 11. S. W. MARGOLIS and J. E. PIN, Inverse semigroups and varieties of finite semigroups, Journal of Algebra, 1987, 10, pp. 306-323. Zbl0625.20045MR910386
  12. 12. J. E. PIN, Variétés de Langages Formels. (Masson, Paris, 1984), Varieties of Formal Languages, (North Oxford Academic, London, 1986 and Plenum, New York, 1986). Zbl0636.68093MR752695
  13. 13. J. E. PIN, On semidirect products of two finite semilattices, Semigroup Forum, 1984, 28, pp. 73-81. Zbl0527.20046MR729653

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.