Immunity and simplicity for exact counting and other counting classes

J. Rothe

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1999)

  • Volume: 33, Issue: 2, page 159-176
  • ISSN: 0988-3754

How to cite

top

Rothe, J.. "Immunity and simplicity for exact counting and other counting classes." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 33.2 (1999): 159-176. <http://eudml.org/doc/92597>.

@article{Rothe1999,
author = {Rothe, J.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {polynomial hierarchy},
language = {eng},
number = {2},
pages = {159-176},
publisher = {EDP-Sciences},
title = {Immunity and simplicity for exact counting and other counting classes},
url = {http://eudml.org/doc/92597},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Rothe, J.
TI - Immunity and simplicity for exact counting and other counting classes
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 2
SP - 159
EP - 176
LA - eng
KW - polynomial hierarchy
UR - http://eudml.org/doc/92597
ER -

References

top
  1. [1] T. Baker, J. Gill and R. Solovay, Relativizations of the P=?NP question. SIAM J. Comput. 4 (1975) 431-442. Zbl0323.68033MR395311
  2. [2] J. Balcázar, Simplicity, relativizations and nondeterminism. SIAM J. Comput. 14 (1985) 148-157. Zbl0567.68027MR774935
  3. [3] J. Balcázar, J. Díaz and J. Gabarró, Structural Complexity I. EATCS Monographs in theoretical computer science. Springer-Verlag (1988). Zbl0638.68040MR1047862
  4. [4] J. Balcázar and D. Russo, Immunity and simplicity in relativizations of probabilistic complexity classes. RAIRO, Theoret. Informatics Appl. 22 (1988) 227-244. Zbl0647.68053MR951339
  5. [5] R. Beigel, Relativized counting classes: Relations among thresholds, parity, and mods. J. Comput. System Sci. 42 (1991) 76-96. Zbl0717.68031MR1093301
  6. [6] R. Beigel, Perceptrons, PP, and the polynomial hierarchy. Computational Complexity 4 (1994) 339-349. Zbl0829.68059MR1313534
  7. [7] R. Beigel, R. Chang and M. Ogiwara, A relationship between difference hierarchies and relativized polynomial hierarchies. Math. Systems Theory 26 (1993) 293-310. Zbl0776.68043MR1209999
  8. [8] C. Bennett and J. Gill, Relative to a random oracle A, PA ≠ NPA ≠ coNPA with probability 1. SIAM J. Comput. 10 (1981) 96-113. Zbl0454.68030MR605606
  9. [9] C. Berg and S. Ulfberg, A lower bound for perceptrons and an oracle separation of the PPPH hierarchy. J. Comput. System Sci., to appear. A preliminary version appeared, in Proc. of the 12th Annual IEEE Conference on Computational Complexity, IEEE Computer Society Press (1997) 165-172. MR1758134
  10. [10] D. Bovet, P. Crescenzi and R. Silvestri, A uniform approach to define complexity classes. Theoret. Comput. Sci. 104 (1992) 263-283. Zbl0754.68049MR1186181
  11. [11] D. Bruschi, Strong separations of the polynomial hierarchy with oracles: Constructive separations by immune and simple sets. Theoret. Comput. Sci. 102 (1992) 215-252. Zbl0755.68050MR1174734
  12. [12] D. Bruschi, D. Joseph and P. Young, Strong separations for the boolean hierarchy over RP. Internat. J. Foundations Comput. Sci. 1 (1990) 201-218. Zbl0732.68039MR1097013
  13. [13] D. Eppstein, L. Hemachandra, J. Tisdall and B. Yener, Simultaneous strong separations of probabilistic and unambiguous complexity classes. Math. Systems Theory 25 (1992) 23-36. Zbl0766.68038MR1139093
  14. [14] L. Fortnow and N. Reingold, PP is closed under truth-table reductions, in Proc. of the 6th Structure in Complexity Theory Conference, IEEE Computer Society Press (1991) 13-15. Zbl0851.68029
  15. [15] M. Furst, J. Saxe and M. Sipser, Parity, circuits, and the polynomial-time hierarchy. Math. Systems Theory 17 (1984) 13-27. Zbl0534.94008MR738749
  16. [16] J. Gill, Computational complexity of probabilistic Turing machines. SIAM J. Comput. 6 (1977) 675-695. Zbl0366.02024MR464691
  17. [17] L. Goldschlager and I. Parberry, On the construction of parallel computers from various bases of boolean functions. Theoret. Comput. Sci. 43 (1986) 43-58. Zbl0604.68054MR847902
  18. [18] F. Green, An oracle separating ⊕P from PPPH. Inform. Process. Lett. 37 (1991) 149-153. Zbl0714.68032MR1095698
  19. [19] T. Gundermann, N. Nasser and G. Wechsung, A survey on counting classes, in Proc. of the 5th Structure in Complexity Theory Conference, IEEE Computer Society Press (1990) 140-153. MR1097665
  20. [20] J. Håstad, Almost optimal lower bounds for small depth circuits, in S. Micali, Ed., Randomness and Computation 5 of Advances in Computing Research. JAI Press, Greenwich (1989) 143-170. 
  21. [21] L. Hemaspaandra, J. Rothe and G. Wechsung, Easy sets and hard certificate schemes. Acta Inform. 34 (1997) 859-879. Zbl0883.68072MR1480239
  22. [22] L. Hemaspaandra and M. Zimand, Strong self-reducibility precludes strong immunity. Math. Systems Theory 29 (1996) 535-548. Zbl0857.68046MR1397918
  23. [23] S. Homer and W. Maass, Oracle dependent properties of the lattice of NP sets. Theoret. Comput. Sci. 24 (1983) 279-289. Zbl0543.03024MR716824
  24. [24] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (1979). Zbl0426.68001MR645539
  25. [25] K. Ko, Relativized polynomial time hierarchies having exactly k levels. SIAM J. Comput. 18 (1989) 392-408. Zbl0679.68088MR986675
  26. [26] K. Ko, A note on separating the relativized polynomial time hierarchy by immune sets. RAIRO, Theoret. Informatics Appl. 24 (1990) 229-240. Zbl0701.68032MR1072992
  27. [27] R. Ladner, N. Lynch and A. Selman, A comparison of polynomial time reducibilities. Theoret. Comput. Sci. 1 (1975) 103-124. Zbl0321.68039MR395319
  28. [28] C. Lautemann, BPP and the polynomial hierarchy. Inform. Process. Lett. 17 (1983) 215-217. Zbl0515.68042MR742072
  29. [29] G. Lischke, Towards the actual relationship between NP and exponential time. Mathematical Logic Quarterly, to appear. A preliminary version has appeared as: Impossibilities and possibilities of weak separation between NP and exponential time, in Proc. of the 5th Structure in Complexity Theory Conference, IEEE Computer Society Press (1990) 245-253. Zbl0933.03046MR1097674
  30. [30] A. Meyer and L. Stockmeyer. The equivalence problem for regular expressions with squaring requires exponential space, in Proc. of the 13th IEEE Symposium on Switching and Automata Theory (1972) 125-129. 
  31. [31] H. Müller, A note on balanced immunity. Math. Systems Theory 26 (1993) 157-167. Zbl0771.68053MR1196155
  32. [32] N. Nisan and A. Wigderson, Hardness vs randomness. J. Comput. System Sci. 49 (1994) 149-167. Zbl0821.68057MR1293639
  33. [33] C. Papadimitriou, Computational Complexity. Addison-Wesley (1994). Zbl0833.68049MR1251285
  34. [34] C. Papadimitriou and S. Zachos, Two remarks on the power of counting, in Proc. of the 6th GI Conference on Theoretical Computer Science, Springer-Verlag, Lecture Notes in Computer Science 145 (1983) 269-276. Zbl0506.68039
  35. [35] A. Razborov, Lower bounds on the size of bounded depth circuits over a complete basis with logical addition. Mat. Zametki 41 (1987) 598-607. In Russian. English Translation in Mathematical Notes of the Academy of Sciences of the USSR 41 (1987) 333-338. Zbl0632.94030MR897705
  36. [36] K. Regan and J. Royer, On closure properties of bounded two-sided error complexity classes. Math. Systems Theory 28 (1995) 229-243. Zbl0827.68046MR1316600
  37. [37] J. Rothe, Some closure properties of GAP-definable classes. Technical Report TR Math/93/6, Friedrich-Schiller-Universität Jena, Jena, Germany (1993). 
  38. Appeared as part of: A promise class at least as hard as the polynomial hierarchy. J. Comput. Inform. 1 (1995) 92-107. MR1647454
  39. [38] J. Rothe, Immunity and simplicity for exact counting and other counting classes. Technical Report TR 679, University of Rochester, Rochester, NY (1998). Zbl0946.68051MR1707968
  40. [39] U. Schöning and R. Book, Immunity, relativization, and nondeterminism. SIAM J. Comput. 13 (1984) 329-337. Zbl0558.68039
  41. [40] J. Simon, On Some Central Problems in Computational Complexity. PhD thesis, Cornell University, Ithaca, NY (1975). Available as Cornell Department of Computer Science Technical Report TR75-224. 
  42. [41] M. Sipser, Borel sets and circuit complexity, in Proc. of the 15th ACM Symposium on Theory of Computing (1983) 61-69. 
  43. [42] M. Sipser, A complexity theoretic approach to randomness, in Proc. of the 15th ACM Symposium on Theory of Computing (1983) 330-335. 
  44. [43] R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity, in Proc. of the 19th ACM Symposium on Theory of Computing, ACM Press (1987) 77-82. 
  45. [44] L. Stockmeyer, The polynomial-time hierarchy. Theoret. Comput. Sci. 3 (1977) 1-22. Zbl0353.02024MR438810
  46. [45] S. Toda, PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20 (1991) 865-877. Zbl0733.68034MR1115655
  47. [46] S. Toda and M. Ogiwara, Counting classes are at least as hard as the polynomial-time hierarchy. SIAM J. Comput. 21 (1992) 316-328. Zbl0755.68055MR1154526
  48. [47] J. Torán, Structural Properties of the Counting Hierarchies. PhD thesis, Universitat Politècnica de Catalunya, Barcelona (1988). 
  49. [48] J. Torán, Complexity classes defined by counting quantifiers. J. Assoc. Comput. Mach. 38 (1991) 753-774. Zbl0799.68080MR1125929
  50. [49] L. Torenvliet, Structural Concepts in Relativised Hierarchies. PhD thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands (1986). 
  51. [50] L. Torenvliet and P. van Emde Boas, Simplicity, immunity, relativizations and nondeterminism. Inform. and Comput. 80 (1989) 1-17. Zbl0664.68049MR978058
  52. [51] K. Wagner, The complexity of combinatorial problems with succinct input representations. Acta Inform. 23 (1986) 325-356. Zbl0621.68032MR853581
  53. [52] C. Wrathall, Complete sets and the polynomial-time hierarchy. Theoret. Comput. Sci. 3 (1977) 23-33. Zbl0366.02031MR438811
  54. [53] A. Yao, Separating the polynomial-time hierarchy by oracles, in Proc. of the 26th IEEE Symposium on Foundations of Computer Science, IEEE Computer Society Press (1985) 1-10. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.