Immunity and simplicity for exact counting and other counting classes
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1999)
- Volume: 33, Issue: 2, page 159-176
- ISSN: 0988-3754
Access Full Article
topHow to cite
topRothe, J.. "Immunity and simplicity for exact counting and other counting classes." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 33.2 (1999): 159-176. <http://eudml.org/doc/92597>.
@article{Rothe1999,
author = {Rothe, J.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {polynomial hierarchy},
language = {eng},
number = {2},
pages = {159-176},
publisher = {EDP-Sciences},
title = {Immunity and simplicity for exact counting and other counting classes},
url = {http://eudml.org/doc/92597},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Rothe, J.
TI - Immunity and simplicity for exact counting and other counting classes
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 2
SP - 159
EP - 176
LA - eng
KW - polynomial hierarchy
UR - http://eudml.org/doc/92597
ER -
References
top- [1] T. Baker, J. Gill and R. Solovay, Relativizations of the P=?NP question. SIAM J. Comput. 4 (1975) 431-442. Zbl0323.68033MR395311
- [2] J. Balcázar, Simplicity, relativizations and nondeterminism. SIAM J. Comput. 14 (1985) 148-157. Zbl0567.68027MR774935
- [3] J. Balcázar, J. Díaz and J. Gabarró, Structural Complexity I. EATCS Monographs in theoretical computer science. Springer-Verlag (1988). Zbl0638.68040MR1047862
- [4] J. Balcázar and D. Russo, Immunity and simplicity in relativizations of probabilistic complexity classes. RAIRO, Theoret. Informatics Appl. 22 (1988) 227-244. Zbl0647.68053MR951339
- [5] R. Beigel, Relativized counting classes: Relations among thresholds, parity, and mods. J. Comput. System Sci. 42 (1991) 76-96. Zbl0717.68031MR1093301
- [6] R. Beigel, Perceptrons, PP, and the polynomial hierarchy. Computational Complexity 4 (1994) 339-349. Zbl0829.68059MR1313534
- [7] R. Beigel, R. Chang and M. Ogiwara, A relationship between difference hierarchies and relativized polynomial hierarchies. Math. Systems Theory 26 (1993) 293-310. Zbl0776.68043MR1209999
- [8] C. Bennett and J. Gill, Relative to a random oracle A, PA ≠ NPA ≠ coNPA with probability 1. SIAM J. Comput. 10 (1981) 96-113. Zbl0454.68030MR605606
- [9] C. Berg and S. Ulfberg, A lower bound for perceptrons and an oracle separation of the PPPH hierarchy. J. Comput. System Sci., to appear. A preliminary version appeared, in Proc. of the 12th Annual IEEE Conference on Computational Complexity, IEEE Computer Society Press (1997) 165-172. MR1758134
- [10] D. Bovet, P. Crescenzi and R. Silvestri, A uniform approach to define complexity classes. Theoret. Comput. Sci. 104 (1992) 263-283. Zbl0754.68049MR1186181
- [11] D. Bruschi, Strong separations of the polynomial hierarchy with oracles: Constructive separations by immune and simple sets. Theoret. Comput. Sci. 102 (1992) 215-252. Zbl0755.68050MR1174734
- [12] D. Bruschi, D. Joseph and P. Young, Strong separations for the boolean hierarchy over RP. Internat. J. Foundations Comput. Sci. 1 (1990) 201-218. Zbl0732.68039MR1097013
- [13] D. Eppstein, L. Hemachandra, J. Tisdall and B. Yener, Simultaneous strong separations of probabilistic and unambiguous complexity classes. Math. Systems Theory 25 (1992) 23-36. Zbl0766.68038MR1139093
- [14] L. Fortnow and N. Reingold, PP is closed under truth-table reductions, in Proc. of the 6th Structure in Complexity Theory Conference, IEEE Computer Society Press (1991) 13-15. Zbl0851.68029
- [15] M. Furst, J. Saxe and M. Sipser, Parity, circuits, and the polynomial-time hierarchy. Math. Systems Theory 17 (1984) 13-27. Zbl0534.94008MR738749
- [16] J. Gill, Computational complexity of probabilistic Turing machines. SIAM J. Comput. 6 (1977) 675-695. Zbl0366.02024MR464691
- [17] L. Goldschlager and I. Parberry, On the construction of parallel computers from various bases of boolean functions. Theoret. Comput. Sci. 43 (1986) 43-58. Zbl0604.68054MR847902
- [18] F. Green, An oracle separating ⊕P from PPPH. Inform. Process. Lett. 37 (1991) 149-153. Zbl0714.68032MR1095698
- [19] T. Gundermann, N. Nasser and G. Wechsung, A survey on counting classes, in Proc. of the 5th Structure in Complexity Theory Conference, IEEE Computer Society Press (1990) 140-153. MR1097665
- [20] J. Håstad, Almost optimal lower bounds for small depth circuits, in S. Micali, Ed., Randomness and Computation 5 of Advances in Computing Research. JAI Press, Greenwich (1989) 143-170.
- [21] L. Hemaspaandra, J. Rothe and G. Wechsung, Easy sets and hard certificate schemes. Acta Inform. 34 (1997) 859-879. Zbl0883.68072MR1480239
- [22] L. Hemaspaandra and M. Zimand, Strong self-reducibility precludes strong immunity. Math. Systems Theory 29 (1996) 535-548. Zbl0857.68046MR1397918
- [23] S. Homer and W. Maass, Oracle dependent properties of the lattice of NP sets. Theoret. Comput. Sci. 24 (1983) 279-289. Zbl0543.03024MR716824
- [24] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (1979). Zbl0426.68001MR645539
- [25] K. Ko, Relativized polynomial time hierarchies having exactly k levels. SIAM J. Comput. 18 (1989) 392-408. Zbl0679.68088MR986675
- [26] K. Ko, A note on separating the relativized polynomial time hierarchy by immune sets. RAIRO, Theoret. Informatics Appl. 24 (1990) 229-240. Zbl0701.68032MR1072992
- [27] R. Ladner, N. Lynch and A. Selman, A comparison of polynomial time reducibilities. Theoret. Comput. Sci. 1 (1975) 103-124. Zbl0321.68039MR395319
- [28] C. Lautemann, BPP and the polynomial hierarchy. Inform. Process. Lett. 17 (1983) 215-217. Zbl0515.68042MR742072
- [29] G. Lischke, Towards the actual relationship between NP and exponential time. Mathematical Logic Quarterly, to appear. A preliminary version has appeared as: Impossibilities and possibilities of weak separation between NP and exponential time, in Proc. of the 5th Structure in Complexity Theory Conference, IEEE Computer Society Press (1990) 245-253. Zbl0933.03046MR1097674
- [30] A. Meyer and L. Stockmeyer. The equivalence problem for regular expressions with squaring requires exponential space, in Proc. of the 13th IEEE Symposium on Switching and Automata Theory (1972) 125-129.
- [31] H. Müller, A note on balanced immunity. Math. Systems Theory 26 (1993) 157-167. Zbl0771.68053MR1196155
- [32] N. Nisan and A. Wigderson, Hardness vs randomness. J. Comput. System Sci. 49 (1994) 149-167. Zbl0821.68057MR1293639
- [33] C. Papadimitriou, Computational Complexity. Addison-Wesley (1994). Zbl0833.68049MR1251285
- [34] C. Papadimitriou and S. Zachos, Two remarks on the power of counting, in Proc. of the 6th GI Conference on Theoretical Computer Science, Springer-Verlag, Lecture Notes in Computer Science 145 (1983) 269-276. Zbl0506.68039
- [35] A. Razborov, Lower bounds on the size of bounded depth circuits over a complete basis with logical addition. Mat. Zametki 41 (1987) 598-607. In Russian. English Translation in Mathematical Notes of the Academy of Sciences of the USSR 41 (1987) 333-338. Zbl0632.94030MR897705
- [36] K. Regan and J. Royer, On closure properties of bounded two-sided error complexity classes. Math. Systems Theory 28 (1995) 229-243. Zbl0827.68046MR1316600
- [37] J. Rothe, Some closure properties of GAP-definable classes. Technical Report TR Math/93/6, Friedrich-Schiller-Universität Jena, Jena, Germany (1993).
- Appeared as part of: A promise class at least as hard as the polynomial hierarchy. J. Comput. Inform. 1 (1995) 92-107. MR1647454
- [38] J. Rothe, Immunity and simplicity for exact counting and other counting classes. Technical Report TR 679, University of Rochester, Rochester, NY (1998). Zbl0946.68051MR1707968
- [39] U. Schöning and R. Book, Immunity, relativization, and nondeterminism. SIAM J. Comput. 13 (1984) 329-337. Zbl0558.68039
- [40] J. Simon, On Some Central Problems in Computational Complexity. PhD thesis, Cornell University, Ithaca, NY (1975). Available as Cornell Department of Computer Science Technical Report TR75-224.
- [41] M. Sipser, Borel sets and circuit complexity, in Proc. of the 15th ACM Symposium on Theory of Computing (1983) 61-69.
- [42] M. Sipser, A complexity theoretic approach to randomness, in Proc. of the 15th ACM Symposium on Theory of Computing (1983) 330-335.
- [43] R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity, in Proc. of the 19th ACM Symposium on Theory of Computing, ACM Press (1987) 77-82.
- [44] L. Stockmeyer, The polynomial-time hierarchy. Theoret. Comput. Sci. 3 (1977) 1-22. Zbl0353.02024MR438810
- [45] S. Toda, PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20 (1991) 865-877. Zbl0733.68034MR1115655
- [46] S. Toda and M. Ogiwara, Counting classes are at least as hard as the polynomial-time hierarchy. SIAM J. Comput. 21 (1992) 316-328. Zbl0755.68055MR1154526
- [47] J. Torán, Structural Properties of the Counting Hierarchies. PhD thesis, Universitat Politècnica de Catalunya, Barcelona (1988).
- [48] J. Torán, Complexity classes defined by counting quantifiers. J. Assoc. Comput. Mach. 38 (1991) 753-774. Zbl0799.68080MR1125929
- [49] L. Torenvliet, Structural Concepts in Relativised Hierarchies. PhD thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands (1986).
- [50] L. Torenvliet and P. van Emde Boas, Simplicity, immunity, relativizations and nondeterminism. Inform. and Comput. 80 (1989) 1-17. Zbl0664.68049MR978058
- [51] K. Wagner, The complexity of combinatorial problems with succinct input representations. Acta Inform. 23 (1986) 325-356. Zbl0621.68032MR853581
- [52] C. Wrathall, Complete sets and the polynomial-time hierarchy. Theoret. Comput. Sci. 3 (1977) 23-33. Zbl0366.02031MR438811
- [53] A. Yao, Separating the polynomial-time hierarchy by oracles, in Proc. of the 26th IEEE Symposium on Foundations of Computer Science, IEEE Computer Society Press (1985) 1-10.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.