The μ -calculus alternation-depth hierarchy is strict on binary trees

André Arnold

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1999)

  • Volume: 33, Issue: 4-5, page 329-339
  • ISSN: 0988-3754

How to cite

top

Arnold, André. "The $\mu $-calculus alternation-depth hierarchy is strict on binary trees." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 33.4-5 (1999): 329-339. <http://eudml.org/doc/92607>.

@article{Arnold1999,
author = {Arnold, André},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {alternation-depth hierarchy of the -calculus},
language = {eng},
number = {4-5},
pages = {329-339},
publisher = {EDP-Sciences},
title = {The $\mu $-calculus alternation-depth hierarchy is strict on binary trees},
url = {http://eudml.org/doc/92607},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Arnold, André
TI - The $\mu $-calculus alternation-depth hierarchy is strict on binary trees
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 4-5
SP - 329
EP - 339
LA - eng
KW - alternation-depth hierarchy of the -calculus
UR - http://eudml.org/doc/92607
ER -

References

top
  1. [1] A. Arnold, Logical definability of fixed points. Theoret. Comput Sci. 61 (1988) 289-297. Zbl0663.03024MR980247
  2. [2] A. Arnold and M. Nivat, The metric space of infinite trees. Algebraic and topological properties. Fund. Inform. 4 (1980) 445-476. Zbl0453.68021MR604273
  3. [3] A. Arnold and D. Niwiński, Fixed-point characterization of büchi automata on infinite trees. J. Inf. Process. Cybern. EIK 26 (1990). Zbl0721.68040
  4. [4] A. Arnold and D. Niwiński, Fixed point characterization of weak monadic logic definable sets of trees, M. Nivat and A. Podelski, Eds., Tree automata and Languages. Elsevier (1992) 159-188. Zbl0794.03054MR1196736
  5. [5] J. C. Bradfield, Fixpoint alternation: Arithmetic, transition Systems, and the binary tree, this issue. Zbl0945.68126
  6. [6] J. C. Bradfield, The modal mu-calculus alternation hierarchy is strict, U. Montanari and V. Sassone, Eds., in Proc. CONCUR '96, Lecture Notes in Comput. Sci. 1119 (1996) 233-246. MR1480432
  7. [7] J. C. Bradfield, Simplifying the modal mu-calculus alternation hierarchy, M. Morvan, C. Meinel and D. Krob, Eds., in Proc. STACS '98, Lecture Notes in Comput. Sci. 1373 (1998) 39-49. Zbl0892.03005MR1650761
  8. [8] E. A. Emerson and C. S. Jutla, Tree automata, mu-calculus and determinacy, in Proc. FOCS '91. IEEE Computer Society Press (1991) 368-377. 
  9. [9] Y. Gurevitch and L. Harrington, Trees, automata and games, in Proc. 14th ACM Symp. on the Theory of Computing (1982) 60-65. 
  10. [10] G. Lenzi, A hierarchy theorem for the mu-calculus, F. Meyer auf der Heide and B. Monien, Eds., in Proc. ICALP '96, Lecture Notes in Comput. Sci. 1099 (1996) 87-109. Zbl1045.03516MR1464442
  11. [11] A. W. Mostowski, Hierarchies of weak automata and weak monadic formulas. Theoret. Comput. Sci. 83 (1991) 323-335. Zbl0728.68086MR1118576
  12. [12] D. E. Muller, A. Saoudi and P. E. Schupp, Alternating automata, the weak monadic theory of the tree and its complexity. Theoret Comput. Sci. 97 (1992) 233-244. Zbl0776.03017MR1163817
  13. [13] D. E. Muller and P. E. Schupp, Alternating automata on infinite trees, Theoret. Comput. Sci. 54 (1987) 267-276. Zbl0636.68108MR919595
  14. [14] D. Niwiński, On fixed point clones, L. Kott, Ed., in Proc. 13th ICALP, Lecture Notes in Comput. Sci. 226 (1986) 464-473. Zbl0596.68036MR864709
  15. [15] D. Niwński, Fixed points characterization of infinite behaviour of finite state Systems. Theoret. Comput. Sci. 189 (1997) 1-69. Zbl0893.68102
  16. [16] W. Thomas, A hierarchy of sets of infinite trees, A. B. Cremers and H. P. Kriegel, Eds., Theoret. Comput. Sci., Lecture Notes in Comput. Sci. 145 (1983) 335-342. Zbl0502.03022
  17. [17] I. Walukiewicz, Monadic second-order logic on tree-like structures, C. Puech and R. Reischuk, Eds., in Proc. STACS '96, Lecture Notes in Comput. Sci. 1046 (1996) 401-414. MR1462113

NotesEmbed ?

top

You must be logged in to post comments.