Computing the Rabin index of a parity automaton

Olivier Carton; Ramón Maceiras

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1999)

  • Volume: 33, Issue: 6, page 495-505
  • ISSN: 0988-3754

How to cite

top

Carton, Olivier, and Maceiras, Ramón. "Computing the Rabin index of a parity automaton." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 33.6 (1999): 495-505. <http://eudml.org/doc/92617>.

@article{Carton1999,
author = {Carton, Olivier, Maceiras, Ramón},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {Rabin index; parity automaton},
language = {eng},
number = {6},
pages = {495-505},
publisher = {EDP-Sciences},
title = {Computing the Rabin index of a parity automaton},
url = {http://eudml.org/doc/92617},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Carton, Olivier
AU - Maceiras, Ramón
TI - Computing the Rabin index of a parity automaton
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 6
SP - 495
EP - 505
LA - eng
KW - Rabin index; parity automaton
UR - http://eudml.org/doc/92617
ER -

References

top
  1. [1] J. R. Büchi, On a decision method in the restricted second-order arithmetic, in Proc. Int. Congress Logic, Methodology and Philosophy of science, Berkeley 1960, Stanford University Press (1962) 1-11. Zbl0147.25103MR183636
  2. [2] O. Carton, Chain automata. Theoret. Comput. Sci. 161 (1996) 191-203. Zbl0872.68117MR1398869
  3. [3] E. A. Emerson and C. S. Jutla, Tree automata, Mu-calculus and determinacy, in Proc. 32th Symp. on Foundations of Computer Science (1991) 368-377. 
  4. [4] S. C. Krishnan, A. Puri and R. K. Brayton, Structural complexity of ω-languages, in STACS '95, Springer-Verlag, Lectures Notes in Comput. Sci. 900 (1995) 143-156. MR1371396
  5. [5] R. McNaughton, Testing and generating infinite sequences by a finite automaton. Inform. Control 9 (1966) 521-530. Zbl0212.33902MR213241
  6. [6] A. Mostowski, Regular expressions for infinite trees and a standard form for automata, in Computation theory, A. Skowron, Ed., Springer-Verlag, Berlin, Lectures Notes in Comput. Sci. 208 (1984) 157-168. Zbl0612.68046MR827531
  7. [7] A. Mostowski, Hierarchies of weak automata and weak monadic formulas. Theoret. Comput. Sci. 83 (1991) 323-335. Zbl0728.68086MR1118576
  8. [8] D. Muller, Infinite sequences and finite machines, in Switching Theory and Logical Design, P. of Fourth Annual IEEE Symp., Ed. (1963) 3-16. 
  9. [9] M. O. Rabin, Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math. Soc. 141 (1969) 1-35. Zbl0221.02031MR246760
  10. [10] R. E. Tarjan, Depth first search and linear graphs. SIAM J. Comput. 1 (1972) 146-160. Zbl0251.05107MR304178
  11. [11] W. Thomas, Automata on infinite objects, in Handbook of Theoretical Computer Science, J. van Leeuwen, Ed., B (Elsevier, 1990) Chapter 4, pp. 133-191. Zbl0900.68316MR1127189
  12. [12] K. Wagner, Eine topologische Charakteriesierung einiger Klassen regulärer Folgenmengen. Elektron. Informationsverarb. Kybemet. 13 (1977) 505-519. Zbl0379.94070MR536672
  13. [13] K. Wagner, On ω-regular sets. Inform. Control 43 (1979) 123-177. Zbl0434.68061MR553694
  14. [14] T. Wilke and H. Yoo, Computing the Wadge degree, the Lipschitz degree, and the Rabin index of a regular language of infinite words in polynomial time, in Trees in Algebra and Prograrnming - CAAP '95 P. M. et al., Ed., Springer-Verlag, Lectures Notes in Comput. Sci. 915 (1995) 288-302. 
  15. [15] T. Wilke and H. Yoo, Computing the Rabin index of a regular language of infinite words. Inform. Comput. 130 (1996) 61-70. Zbl0872.68097MR1423481

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.