Finite presentability of strongly finite dilators
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2000)
- Volume: 34, Issue: 6, page 425-431
- ISSN: 0988-3754
Access Full Article
topHow to cite
topTakaki, Osamu. "Finite presentability of strongly finite dilators." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 34.6 (2000): 425-431. <http://eudml.org/doc/92644>.
@article{Takaki2000,
author = {Takaki, Osamu},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {ordinal notation; finite presentability; strongly finite dilator; endofunctors; category of ordinals; category of dilators},
language = {eng},
number = {6},
pages = {425-431},
publisher = {EDP-Sciences},
title = {Finite presentability of strongly finite dilators},
url = {http://eudml.org/doc/92644},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Takaki, Osamu
TI - Finite presentability of strongly finite dilators
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2000
PB - EDP-Sciences
VL - 34
IS - 6
SP - 425
EP - 431
LA - eng
KW - ordinal notation; finite presentability; strongly finite dilator; endofunctors; category of ordinals; category of dilators
UR - http://eudml.org/doc/92644
ER -
References
top- [1] J. Adàmek and J. Rosický, Locally presentable and accessible categories. Cambridge University Press, London Math. Soc. Lecture Notes Ser. 189 (1994). Zbl0795.18007MR1294136
- [2] E. A. Cichon and S. S. Wainer, The slow-growing and the Grzegorczyk hierarchies. J. Symbolic Logic 48 (1983) 399-408. Zbl0567.03020MR704094
- [3] J. Y. Girard, π½-logic, Part I; dilators. Ann. Math. Logic 21 (1981) 75-219. Zbl0496.03037MR656793
- [4] J. Y. Girard, Proof theory and logical complexity, Vol. 1. Bibliopolis (1987). Zbl0635.03052MR903244
- [5] P. T. Johnstone, A topos-theorist looks at dilators. J. Pure Appl. Algebra 58 (1989) 235-249. Zbl0675.18005MR1004604
- [6] A. Weiermann, A functorial property of the Aczel-Buchholz-Feferman function. J. Symbolic Logic 59 (1994) 945-955. Zbl0808.03039MR1295980
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.