Finite presentability of strongly finite dilators

Osamu Takaki

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2000)

  • Volume: 34, Issue: 6, page 425-431
  • ISSN: 0988-3754

How to cite

top

Takaki, Osamu. "Finite presentability of strongly finite dilators." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 34.6 (2000): 425-431. <http://eudml.org/doc/92644>.

@article{Takaki2000,
author = {Takaki, Osamu},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {ordinal notation; finite presentability; strongly finite dilator; endofunctors; category of ordinals; category of dilators},
language = {eng},
number = {6},
pages = {425-431},
publisher = {EDP-Sciences},
title = {Finite presentability of strongly finite dilators},
url = {http://eudml.org/doc/92644},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Takaki, Osamu
TI - Finite presentability of strongly finite dilators
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2000
PB - EDP-Sciences
VL - 34
IS - 6
SP - 425
EP - 431
LA - eng
KW - ordinal notation; finite presentability; strongly finite dilator; endofunctors; category of ordinals; category of dilators
UR - http://eudml.org/doc/92644
ER -

References

top
  1. [1] J. Adàmek and J. Rosický, Locally presentable and accessible categories. Cambridge University Press, London Math. Soc. Lecture Notes Ser. 189 (1994). Zbl0795.18007MR1294136
  2. [2] E. A. Cichon and S. S. Wainer, The slow-growing and the Grzegorczyk hierarchies. J. Symbolic Logic 48 (1983) 399-408. Zbl0567.03020MR704094
  3. [3] J. Y. Girard, π½-logic, Part I; dilators. Ann. Math. Logic 21 (1981) 75-219. Zbl0496.03037MR656793
  4. [4] J. Y. Girard, Proof theory and logical complexity, Vol. 1. Bibliopolis (1987). Zbl0635.03052MR903244
  5. [5] P. T. Johnstone, A topos-theorist looks at dilators. J. Pure Appl. Algebra 58 (1989) 235-249. Zbl0675.18005MR1004604
  6. [6] A. Weiermann, A functorial property of the Aczel-Buchholz-Feferman function. J. Symbolic Logic 59 (1994) 945-955. Zbl0808.03039MR1295980

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.