Codes générateurs minimaux de langages de mots bi-infinis

Jeanne Devolder

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2000)

  • Volume: 34, Issue: 6, page 585-596
  • ISSN: 0988-3754

How to cite

top

Devolder, Jeanne. "Codes générateurs minimaux de langages de mots bi-infinis." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 34.6 (2000): 585-596. <http://eudml.org/doc/92652>.

@article{Devolder2000,
author = {Devolder, Jeanne},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {synchronous codes; bi-infinite words; minimal generator; precircular codes; very thin codes; circular codes; rational codes},
language = {fre},
number = {6},
pages = {585-596},
publisher = {EDP-Sciences},
title = {Codes générateurs minimaux de langages de mots bi-infinis},
url = {http://eudml.org/doc/92652},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Devolder, Jeanne
TI - Codes générateurs minimaux de langages de mots bi-infinis
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2000
PB - EDP-Sciences
VL - 34
IS - 6
SP - 585
EP - 596
LA - fre
KW - synchronous codes; bi-infinite words; minimal generator; precircular codes; very thin codes; circular codes; rational codes
UR - http://eudml.org/doc/92652
ER -

References

top
  1. [1] J. Berstel et D. Perrin, Theory of codes. Academic Press, Orlando (1985). Zbl0587.68066MR797069
  2. [2] D. Beauquier, Automates sur les mots bi-infinis. Thesis, University of Paris VII, France (1986). 
  3. [3] V. Bruyère, Codes, Chapter 7, Algebraic Combinatorics on words, edited by M. Lothaire (to appear). Zbl1001.68093
  4. [4] J. Devolder, Comportement des codes vis-à-vis des mots infinis et bi-infinis. Théorie des Automates et Applications, edited by D. Krob. Rouen, France (1991) 75-90. 
  5. [5] J. Devolder et I. Litovsky, Finitely generated biω-langages, Theoret. Comput. Sci. 85 (1991) 33-52. Zbl0745.68066MR1118128
  6. [6] J. Devolder et E. Timmerman, Finitary codes for biinfinite words. RAIRO: Theoret. Informaties Appl. 26 (1992) 363-386. Zbl0754.68066MR1173175
  7. [7] J. Devolder, Precircular codes and periodic bi-infinite words. Inform. and Comput. 107 (1993) 185-201. Zbl0790.94007MR1251618
  8. [8] J. Devolder, Codes, mots infinis et bi-infinis. Ph. D. Thesis, University of Lille I, France (1993). 
  9. [9] J. Devolder, M. Latteux, I. Litovsky et L. Staiger, Codes and infinite words. Acta Cybernet. 11 (1994) 241-256. Zbl0938.68691MR1302730
  10. [10] F. Gire et M. Nivat, Langages algébriques de mots bi-infinis. Theoret. Comput Sci. 86 (1991) 277-323. Zbl0742.68039MR1122792
  11. [11] J.-L. Lassez, Circular codes and synchronisation. Internat J. Comput Inform. Sci. 5 (1976) 201-208. Zbl0401.68050MR520989
  12. [12] I. Litovsky, Prefix-free languages as ω-generators. Inform. Process: Lett. 37 (1991) 61-65. Zbl0714.68049MR1093104
  13. [13] M. Nivat et D. Perrin, Ensembles reconnaissables de mots bi-infinis, in Proc. 14e ACM Symp. on Theory of Computing, Vol. 005 (1982) 47-59. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.