Depth lower bounds for monotone semi-unbounded fan-in circuits
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2001)
- Volume: 35, Issue: 3, page 277-286
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topJohannsen, Jan. "Depth lower bounds for monotone semi-unbounded fan-in circuits." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 35.3 (2001): 277-286. <http://eudml.org/doc/92666>.
@article{Johannsen2001,
abstract = {The depth hierarchy results for monotone circuits of Raz and McKenzie [5] are extended to the case of monotone circuits of semi-unbounded fan-in. It follows that the inclusions $NC^i \subseteq SAC^i \subseteq AC^i$ are proper in the monotone setting, for every $i\ge 1$.},
author = {Johannsen, Jan},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {monotone circuit; semi-unbounded fan-in; communication complexity; lower bound; Boolean functions},
language = {eng},
number = {3},
pages = {277-286},
publisher = {EDP-Sciences},
title = {Depth lower bounds for monotone semi-unbounded fan-in circuits},
url = {http://eudml.org/doc/92666},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Johannsen, Jan
TI - Depth lower bounds for monotone semi-unbounded fan-in circuits
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 3
SP - 277
EP - 286
AB - The depth hierarchy results for monotone circuits of Raz and McKenzie [5] are extended to the case of monotone circuits of semi-unbounded fan-in. It follows that the inclusions $NC^i \subseteq SAC^i \subseteq AC^i$ are proper in the monotone setting, for every $i\ge 1$.
LA - eng
KW - monotone circuit; semi-unbounded fan-in; communication complexity; lower bound; Boolean functions
UR - http://eudml.org/doc/92666
ER -
References
top- [1] A. Borodin, S.A. Cook, P.W. Dymond, W.L. Ruzzo and M. Tompa, Two applications of inductive counting for complementation problems. SIAM J. Comput. 18 (1989) 559-578. Zbl0678.68031MR996836
- [2] M. Grigni and M. Sipser, Monotone complexity, in Boolean Function Complexity, edited by M.S. Paterson. Cambridge University Press (1992) 57-75. Zbl0766.68040MR1211867
- [3] M. Karchmer and A. Wigderson, Monotone circuits for connectivity require super-logarithmic depth. SIAM J. Discrete Math. 3 (1990) 255-265. Zbl0695.94021MR1039296
- [4] E. Kushilevitz and N. Nisan, Communication Complexity. Cambridge University Press (1997). Zbl0869.68048MR1426129
- [5] R. Raz and P. McKenzie, Separation of the monotone hierarchy. Combinatorica 19 (1999) 403-435. Zbl0977.68037MR1723255
- [6] H. Venkateswaran, Properties that characterize LOGCFL. J. Comput. System Sci. 43 (1991) 380-404. Zbl0776.68046MR1130778
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.