# Atoms and partial orders of infinite languages

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2001)

- Volume: 35, Issue: 4, page 389-401
- ISSN: 0988-3754

## Access Full Article

top## Abstract

top## How to cite

topKuich, Werner, and Sauer, N. W.. "Atoms and partial orders of infinite languages." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 35.4 (2001): 389-401. <http://eudml.org/doc/92673>.

@article{Kuich2001,

abstract = {We determine minimal elements, i.e., atoms, in certain partial orders of factor closed languages under $\subseteq $. This is in analogy to structural Ramsey theory which determines minimal structures in partial orders under embedding.},

author = {Kuich, Werner, Sauer, N. W.},

journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},

keywords = {combinatorics of words; structural Ramsey theory; Combinatorics of words},

language = {eng},

number = {4},

pages = {389-401},

publisher = {EDP-Sciences},

title = {Atoms and partial orders of infinite languages},

url = {http://eudml.org/doc/92673},

volume = {35},

year = {2001},

}

TY - JOUR

AU - Kuich, Werner

AU - Sauer, N. W.

TI - Atoms and partial orders of infinite languages

JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

PY - 2001

PB - EDP-Sciences

VL - 35

IS - 4

SP - 389

EP - 401

AB - We determine minimal elements, i.e., atoms, in certain partial orders of factor closed languages under $\subseteq $. This is in analogy to structural Ramsey theory which determines minimal structures in partial orders under embedding.

LA - eng

KW - combinatorics of words; structural Ramsey theory; Combinatorics of words

UR - http://eudml.org/doc/92673

ER -

## References

top- [1] A. de Luca and St. Varrichio, Finiteness and Regularity in Semigroups and Formal Languages. Springer (1999). Zbl0935.68056MR1696498
- [2] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, Princeton (1981). Zbl0459.28023MR603625
- [3] M. Pouzet and N. Sauer, Edge partitions of the Rado graph. Combinatorica 16 (1996) 1-16. Zbl0881.05095MR1433638
- [4] F.P. Ramsey, On a problem of formal logic. Proc. London Math. Soc. 30 (1930) 264-286. Zbl55.0032.04JFM55.0032.04
- [5] N. Sauer, Coloring finite substructures of countable structures. The Mathematics of Paul Erdős, X. Bolyai Mathematical Society (to appear). Zbl1023.03042MR1954742
- [6] S. Yu, Regular Languages. In: Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa, Springer (1997). MR1469994

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.