A test-set for -power-free binary morphisms
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2001)
- Volume: 35, Issue: 5, page 437-452
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topWlazinski, F.. "A test-set for $k$-power-free binary morphisms." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 35.5 (2001): 437-452. <http://eudml.org/doc/92676>.
@article{Wlazinski2001,
abstract = {A morphism $f$ is $k$-power-free if and only if $f(w)$ is $k$-power-free whenever $w$ is a $k$-power-free word. A morphism $f$ is $k$-power-free up to $m$ if and only if $f(w)$ is $k$-power-free whenever $w$ is a $k$-power-free word of length at most $m$. Given an integer $k \ge 2$, we prove that a binary morphism is $k$-power-free if and only if it is $k$-power-free up to $k^2$. This bound becomes linear for primitive morphisms: a binary primitive morphism is $k$-power-free if and only if it is $k$-power-free up to $2k+1$},
author = {Wlazinski, F.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {combinatorics on words; $k$-power-free words; morphisms; test-sets; binary morphism},
language = {eng},
number = {5},
pages = {437-452},
publisher = {EDP-Sciences},
title = {A test-set for $k$-power-free binary morphisms},
url = {http://eudml.org/doc/92676},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Wlazinski, F.
TI - A test-set for $k$-power-free binary morphisms
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 5
SP - 437
EP - 452
AB - A morphism $f$ is $k$-power-free if and only if $f(w)$ is $k$-power-free whenever $w$ is a $k$-power-free word. A morphism $f$ is $k$-power-free up to $m$ if and only if $f(w)$ is $k$-power-free whenever $w$ is a $k$-power-free word of length at most $m$. Given an integer $k \ge 2$, we prove that a binary morphism is $k$-power-free if and only if it is $k$-power-free up to $k^2$. This bound becomes linear for primitive morphisms: a binary primitive morphism is $k$-power-free if and only if it is $k$-power-free up to $2k+1$
LA - eng
KW - combinatorics on words; $k$-power-free words; morphisms; test-sets; binary morphism
UR - http://eudml.org/doc/92676
ER -
References
top- [1] J. Berstel, Axel thue’s work on repetitions in words, edited by P. Leroux and C. Reutenauer, Séries formelles et combinatoire algébrique. LaCIM, University of Québec at Montréal (1992) 65-80.
- [2] J. Berstel, Axel thue’s papers on repetitions in words: A translation, Technical Report 20. LaCIM, University of Québec at Montréal (1995).
- [3] J. Berstel and P. Séébold, A characterization of overlap-free morphisms. Discrete Appl. Math. 46 (1993) 275-281. Zbl0824.68093MR1243728
- [4] M. Crochemore, Sharp characterizations of squarefree morphisms. Theoret. Comput. Sci. 18 (1982) 221-226. Zbl0482.68085MR652471
- [5] J. Karhumäki, On cube free -words generated by binary morphisms. Discrete Appl. Math. 5 (1983) 279-297. Zbl0505.03022MR690339
- [6] V. Keränen, On the -repetition freeness of length uniform morphisms over a binary alphabet. Discrete Appl. Math. 9 (1984) 297-300. Zbl0547.68082MR763566
- [7] V. Keränen, On the -freeness of morphisms on free monoids. Ann. Acad. Sci. Fenn. 61 (1986). Zbl0604.20056MR869270
- [8] M. Leconte, A characterization of power-free morphisms. Theoret. Comput. Sci. 38 (1985) 117-122. Zbl0572.68066MR805137
- [9] M. Leconte, Codes sans répétition, Ph.D. Thesis. LITP Université P. et M. Curie (1985).
- [10] A. Lentin and M.P. Schützenberger, A combinatorial problem in the theory of free monoids, edited by R.C. Bose and T.E. Dowling. Chapell Hill, North Carolina Press edition, Comb. Math. (1945) 112-144. Zbl0221.20076
- [11] M. Lothaire, Combinatorics on words, Vol. 17 of Encyclopedia of Mathematics, Chap. 9, Equations on words. Addison-Wesley (1983). Reprinted in 1997 by Cambridge University Press in the Cambridge Mathematical Library. Zbl0514.20045
- [12] M. Lothaire, Algebraic combinatorics on words. Cambridge University Press (to appear). Zbl1001.68093MR1905123
- [13] V. Mitrana, Primitive morphisms. Inform. Process. Lett. 64 (1997) 277-281. Zbl06590647MR1608236
- [14] M. Morse, Recurrent geodesics on a surface of negative curvature. Trans. Amer. Math. Soc. 22 (1921) 84-100. Zbl48.0786.06MR1501161JFM48.0786.06
- [15] G. Richomme and P. Séébold, Characterization of test-sets for overlap-free morphisms. Discrete Appl. Math. 98 (1999) 151-157. Zbl0946.68114MR1723693
- [16] G. Richomme and F. Wlazinski, About cube-free morphisms, edited by H. Reichel and S. Tison, STACS 2000. Springer-Verlag, Lecture Notes in Comput. Sci. 1770 (2000) 99-109. Zbl0959.68532MR1781724
- [17] G. Richomme and F. Wlazinski, Some results on -power-free morphisms. Theoret. Comput. Sci. 273 (2002) 119-142. Zbl1014.68127MR1872446
- [18] P. Séébold, Sequences generated by infinitely iterated morphisms. Discrete Appl. Math. 11 (1985) 255-264. Zbl0583.20047MR792893
- [19] A. Thue, Uber unendliche Zeichenreihen. Videnskapsselskapets Skrifter, I. Mat.-naturv. Klasse, Kristiania (1906) 1-22. Zbl39.0283.01JFM39.0283.01
- [20] A. Thue, Uber die gegenseitige Lage gleigher Teile gewisser Zeichenreihen. Videnskapsselskapets Skrifter, I. Mat.-naturv. Klasse, Kristiania (1912) 1-67. Zbl44.0462.01JFM44.0462.01
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.