Random generation for finitely ambiguous context-free languages
Alberto Bertoni; Massimiliano Goldwurm; Massimo Santini[1]
- [1] Dipartimento di Scienze Sociali, Cognitive e Quantitative, Università degli Studi di Modena e Reggio Emilia, Via Giglioli Valle, 42100 Reggio Emilia, Italy;
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2001)
- Volume: 35, Issue: 6, page 499-512
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topBertoni, Alberto, Goldwurm, Massimiliano, and Santini, Massimo. "Random generation for finitely ambiguous context-free languages." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 35.6 (2001): 499-512. <http://eudml.org/doc/92680>.
@article{Bertoni2001,
abstract = {We prove that a word of length $n$ from a finitely ambiguous context-free language can be generated at random under uniform distribution in $O(n^2\log n)$ time by a probabilistic random access machine assuming a logarithmic cost criterion. We also show that the same problem can be solved in polynomial time for every language accepted by a polynomial time $1$-NAuxPDA with polynomially bounded ambiguity.},
affiliation = {Dipartimento di Scienze Sociali, Cognitive e Quantitative, Università degli Studi di Modena e Reggio Emilia, Via Giglioli Valle, 42100 Reggio Emilia, Italy;},
author = {Bertoni, Alberto, Goldwurm, Massimiliano, Santini, Massimo},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
language = {eng},
number = {6},
pages = {499-512},
publisher = {EDP-Sciences},
title = {Random generation for finitely ambiguous context-free languages},
url = {http://eudml.org/doc/92680},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Bertoni, Alberto
AU - Goldwurm, Massimiliano
AU - Santini, Massimo
TI - Random generation for finitely ambiguous context-free languages
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 6
SP - 499
EP - 512
AB - We prove that a word of length $n$ from a finitely ambiguous context-free language can be generated at random under uniform distribution in $O(n^2\log n)$ time by a probabilistic random access machine assuming a logarithmic cost criterion. We also show that the same problem can be solved in polynomial time for every language accepted by a polynomial time $1$-NAuxPDA with polynomially bounded ambiguity.
LA - eng
UR - http://eudml.org/doc/92680
ER -
References
top- [1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, MA (1974). Zbl0326.68005MR413592
- [2] A.V. Aho and J.D. Ullman, The Theory of Parsing, Translation and Compiling - Vol. I: Parsing. Prentice Hall, Englewood Cliffs, NJ (1972). MR408321
- [3] E. Allender, D. Bruschi and G. Pighizzini, The complexity of computing maximal word functions. Comput. Complexity 3 (1993) 368-391. Zbl0802.68061MR1262700
- [4] F.-J. Brandenburg, On one-way auxiliary pushdown automata, edited by H. Waldschmidt, H. Tzschach and H.K.-G. Walter, in Proc. of the 3rd GI Conference on Theoretical Computer Science. Springer, Darmstadt, FRG, Lecture Notes in Comput. Sci. 48 (1977) 132-144. Zbl0359.68055MR483712
- [5] N. Chomsky and M.-P. Schützenberger, The algebraic theory of context-free languages, edited by P. Braffort and D. Hirschberg. North-Holland, Amsterdam, The Netherlands, Computer Programming and Formal Systems (1963) 118-161. Zbl0148.00804MR152391
- [6] L. Comtet, Calcul pratique des coefficients de Taylor d’une fonction algébrique. Enseign. Math. 10 (1964) 267-270. Zbl0166.41702
- [7] S.A. Cook, Characterizations of pushdown machines in terms of time-bounded computers. J. ACM 18 (1971) 4-18. Zbl0222.02035MR292605
- [8] A. Denise and P. Zimmermann, Uniform random generation of decomposable structures using floating-point arithmetic. Theoret. Comput. Sci. 218 (1999) 233-248. Zbl0933.68154MR1702062
- [9] J. Earley, An efficient context-free parsing algorithm. Commun. ACM 13 (1970) 94-102. Zbl0185.43401
- [10] P. Flajolet, P. Zimmerman and B. Van Cutsem, A calculus for the random generation of labelled combinatorial structures. Theoret. Comput. Sci. 132 (1994) 1-35. Zbl0799.68143MR1290534
- [11] M. Goldwurm, Random generation of words in an algebraic language in linear binary space. Inform. Process. Lett. 54 (1995) 229-233. Zbl0875.68532MR1337828
- [12] V. Gore, M. Jerrum, S. Kannan, Z. Sweedyk and S. Mahaney, A quasi-polynomial-time algorithm for sampling words from a context-free language. Inform. and Comput. 134 (1997) 59-74. Zbl0879.68065MR1448522
- [13] D.H. Greene and D.E. Knuth, Mathematics for the analysis of algorithms, Vol. 1. Birkhäuser, Basel, CH, Progress in Comput. Sci. (1981). Zbl0481.68042MR642197
- [14] M.A. Harrison, Introduction to Formal Language Theory. Addison-Wesley, Reading, MA (1978). Zbl0411.68058MR526397
- [15] T. Hickey and J. Cohen, Uniform random generation of strings in a context-free language. SIAM J. Comput. 12 (1963) 645-655. Zbl0524.68046MR721004
- [16] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Language, and Computation. Addison-Wesley, Reading, MA (1979). Zbl0426.68001MR645539
- [17] M.R. Jerrum, L.G. Valiant and V.V. Vazirani, Random generation of combinatorial structures from a uniform distribution. Theoret. Comput. Sci. 43 (1986) 169-188. Zbl0597.68056MR855970
- [18] D.E. Knuth and A.C. Yao, The complexity of nonuniform random number generation, edited by J.F. Traub. Academic Press, Algorithms and Complexity: New Directions and Recent Results (1976) 357-428. Zbl0395.65004MR431601
- [19] C. Lautemann, On pushdown and small tape, edited by K. Wagener, Dirk-Siefkes, zum 50. Geburststag (proceedings of a meeting honoring Dirk Siefkes on his fiftieth birthday). Technische Universität Berlin and Universität Ausgburg (1988) 42-47.
- [20] H.G. Mairson, Generating words in a context-free language uniformly at random. Inform. Process. Lett. 49 (1994) 95-99. Zbl0795.68120MR1266949
- [21] M. Santini, Random Uniform Generation and Approximate Counting of Combinatorial Structures, Ph.D. Thesis. Dipartimento di Scienze dell’Informazione (1999).
- [22] A. Szepietowski, Turing Machines with Sublogarithmic Space. Springer Verlag, Lecture Notes in Comput. Sci. 843 (1994). Zbl0998.68062MR1314820
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.