Free burnside semigroups
Alair Pereira Do Lago; Imre Simon
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2001)
- Volume: 35, Issue: 6, page 579-595
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] S.I. Adian, The Burnside problem and identities in groups. Springer-Verlag, Berlin-New York, Ergebnisse der Mathematik und ihrer Grenzgebiete 95 [Results in Mathematics and Related Areas] (1979). Translated from the Russian by John Lennox and James Wiegold. Zbl0417.20001
- [2] S.I. Adyan, The Burnside problem and identities in groups. Izdat. “Nauka”, Moscow (1975). Zbl0417.20001
- [3] J. Brzozowski, Open problems about regular languages, edited by R.V. Book. Academic Press, New York, Formal Language Theory, Perspectives and Open Problems (1980) 23-47. MR600670
- [4] J. Brzozowski, K. Čulík and A. Gabrielian, Classification of non-counting events. J. Comput. System Sci. 5 (1971) 41-53. Zbl0241.94050MR286578
- [5] J.A. Brzozowski and I. Simon, Characterizations of locally testable events. Discrete Math. 4 (1973) 243-271. Zbl0255.94032MR319404
- [6] W. Burnside, On an unsettled question in the theory of discontinuous groups. Quart. J. Math. 33 (1902) 230-238. Zbl33.0149.01JFM33.0149.01
- [7] A. de Luca and S. Varricchio, On non-counting regular classes, edited by M.S. Paterson, Automata, Languages and Programming. Springer-Verlag, Berlin, Lecture Notes in Comput. Sci. 443 (1990) 74-87. Zbl0765.68074
- [8] A. de Luca and S. Varricchio, On non-counting regular classes. Theoret. Comput. Sci. 100 (1992) 67-104. Zbl0780.68084MR1171435
- [9] A.P. do Lago, Local groups in free groupoids satisfying certain monoid identities (to appear). Zbl1010.20039
- [10] A.P. do Lago, Sobre os semigrupos de Burnside , Master’s Thesis. Instituto de Matemática e Estatística da Universidade de São Paulo (1991).
- [11] A.P. do Lago, On the Burnside semigroups , in LATIN’92, edited by I. Simon. Springer-Verlag, Berlin, Lecture Notes in Comput. Sci. 583 (1992) 329-343.
- [12] A.P. do Lago, On the Burnside semigroups . Int. J. Algebra Comput. 6 (1996) 179-227. Zbl0857.20039MR1386074
- [13] A.P. do Lago, Grupos Maximais em Semigrupos de Burnside Livres, Ph.D. Thesis. Universidade de São Paulo (1998). Electronic version at http://www.ime.usp.br/~alair/Burnside/
- [14] A.P. do Lago, Maximal groups in free Burnside semigroups, in LATIN’98, edited by C.L. Lucchesi and A.V. Moura. Springer-Verlag, Berlin, Lecture Notes in Comput. Sci. 1380 (1998) 70-81. Zbl0904.20041
- [15] S. Eilenberg, Automata, languages, and machines, Vol. B. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1976). With two chapters (“Depth decomposition theorem” and “Complexity of semigroups and morphisms”) by B. Tilson, Pures Appl. Math. 59. Zbl0359.94067
- [16] J.A. Green and D. Rees, On semigroups in which . Proc. Cambridge. Philos. Soc. 48 (1952) 35-40. Zbl0046.01903MR46353
- [17] V.S. Guba, The word problem for the relatively free semigroup satisfying with . Int. J. Algebra Comput. 2 (1993) 335-348. Zbl0818.20070MR1240389
- [18] V.S. Guba, The word problem for the relatively free semigroup satisfying with or . Int. J. Algebra Comput. 2 (1993) 125-140. Zbl0783.20034MR1233216
- [19] M. Hall, Solution of the Burnside problem for exponent six. Illinois J. Math. 2 (1958) 764-786. Zbl0083.24801MR102554
- [20] G. Huet and D.C. Oppen, Equations and rewrite rules: A survey, edited by R.V. Book. Academic Press, New York, Formal Language Theory, Perspectives and Open Problems (1980) 349-405.
- [21] S.V. Ivanov, The free Burnside groups of sufficiently large exponents. Int. J. Algebra Comput. 4 (1994) ii+308. Zbl0822.20044MR1283947
- [22] J. Kaďourek and L. Polák, On free semigroups satisfying . Simon Stevin 64 (1990) 3-19. Zbl0712.20038MR1072481
- [23] J.W. Klop, Term rewriting systems: From Church–Rosser to Knuth–Bendix and beyond, edited by M.S. Paterson, Automata, Languages and Programming. Springer-Verlag, Berlin, Lecture Notes in Comput. Sci. 443 (1990) 350-369. Zbl0765.68008
- [24] G. Lallement, Semigroups and Combinatorial Applications. John Wiley & Sons, New York (1979). Zbl0421.20025MR530552
- [25] F.W. Levi and B.L. van der Waerden, Über eine besondere Klasse von Gruppen. Abh. Math. Sem. Hamburg 9 (1933) 154-158. JFM58.0125.02
- [26] I.G. Lysënok, Infinity of Burnside groups of period for . Uspekhi Mat. Nauk 47 (1992) 201-202. Zbl0822.20043MR1185294
- [27] S. MacLane, Categories for the working mathematician. Springer-Verlag, New York, Grad. Texts in Math. 5 (1971). Zbl0232.18001MR354798
- [28] J. McCammond, The solution to the word problem for the relatively free semigroups satisfying with . Int. J. Algebra Comput. 1 (1991) 1-32. Zbl0732.20034MR1112297
- [29] D. McLean, Idempotent semigroups. Amer. Math. Monthly 61 (1954) 110-113. Zbl0055.01404MR60505
- [30] P.S. Novikov and S.I. Adjan, Infinite periodic groups. I. Izv. Akad. Nauk SSSR Ser. Mat. 32 212-244. Zbl0194.03301MR240178
- [31] P.S. Novikov and S.I. Adjan, Infinite periodic groups. II. Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968) 251-524. Zbl0194.03301MR240179
- [32] A.Y. Ol’shanskiĭ, Geometry of defining relations in groups. Kluwer Academic Publishers Group, Dordrecht (1991). Translated from the 1989 Russian original by Yu.A. Bakhturin. Zbl0732.20019
- [33] I. Sanov, Solution of Burnside’s problem for exponent . Leningrad. Gos. Univ. Uchen. Zap. Ser. Mat. 10 (1940) 166-170 (Russian). Zbl0061.02506
- [34] I. Simon, Notes on non-counting languages of order . Manuscript (1970).
- [35] H. Straubing, Finite automata, formal logic, and circuit complexity. Birkhäuser Boston Inc., Boston, MA (1994). Zbl0816.68086MR1269544
- [36] A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Selsk. Skr. I Mat. Nat. Kl. 1 (1912) 1-67. Zbl44.0462.01JFM44.0462.01
- [37] B. Tilson, Categories as algebra: An essential ingredient in the theory of monoids. J. Pure Appl. Algebra 48 (1987) 83-198. Zbl0627.20031MR915990