An Upper Bound on the Space Complexity of Random Formulae in Resolution
RAIRO - Theoretical Informatics and Applications (2010)
- Volume: 36, Issue: 4, page 329-339
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topZito, Michele. "An Upper Bound on the Space Complexity of Random Formulae in Resolution." RAIRO - Theoretical Informatics and Applications 36.4 (2010): 329-339. <http://eudml.org/doc/92705>.
@article{Zito2010,
abstract = {
We prove that, with high probability, the space complexity of refuting
a random unsatisfiable Boolean formula in k-CNF on n
variables and m = Δn clauses is
$O\left(n \cdot \Delta^\{-\frac\{1\}\{k-2\}\}\right)$.
},
author = {Zito, Michele},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Random formulae; space complexity; satisfiability threshold.; satisfiability threshold; random unsatisfiable Boolean formula},
language = {eng},
month = {3},
number = {4},
pages = {329-339},
publisher = {EDP Sciences},
title = {An Upper Bound on the Space Complexity of Random Formulae in Resolution},
url = {http://eudml.org/doc/92705},
volume = {36},
year = {2010},
}
TY - JOUR
AU - Zito, Michele
TI - An Upper Bound on the Space Complexity of Random Formulae in Resolution
JO - RAIRO - Theoretical Informatics and Applications
DA - 2010/3//
PB - EDP Sciences
VL - 36
IS - 4
SP - 329
EP - 339
AB -
We prove that, with high probability, the space complexity of refuting
a random unsatisfiable Boolean formula in k-CNF on n
variables and m = Δn clauses is
$O\left(n \cdot \Delta^{-\frac{1}{k-2}}\right)$.
LA - eng
KW - Random formulae; space complexity; satisfiability threshold.; satisfiability threshold; random unsatisfiable Boolean formula
UR - http://eudml.org/doc/92705
ER -
References
top- D. Achlioptas and G.B. Sorkin, Optimal myopic algorithms for random 3-SAT, in 41st Annual Symposium on Foundations of Computer Science (2000) 590-600.
- M. Alekhnovich, E. Ben-Sasson, A.A. Razborov and A. Wigderson, Space complexity in propositional calculus, in Proc. of the 32nd Annual ACM Symposium on Theory of Computing. Portland, OR (2000).
- P. Beame, R. Karp, T. Pitassi and M. Saks, On the complexity of unsatisfiability proofs for random k-CNF formulas, in Proc. of the 30th Annual ACM Symposium on Theory of Computing. New York (1998) 561-571.
- E. Ben-Sasson and N. Galesi, Space complexity of random formulae in resolution, in Proc. of the 16th Annual IEEE Conference on Computational Complexity. IEEE Computer Society (2001).
- B. Bollobás, C. Borgs, J.T. Chayes, J.H. Kim and D.B. Wilson, The scaling window of the 2-SAT transition. Random Structures Algorithms18 (2001) 201-256.
- P. Cheeseman, B. Kanefsky and W.M. Taylor, Where the really hard problems are, in Proc. of IJCAI-91, edited by Kauffmann (1991) 331-337.
- V. Chvátal and E. Szemerédi, Many hard examples for resolution. J. ACM35 (1988) 759-768.
- S.A. Cook and R. Reckhow, The relative efficiency of propositional proof systems. J. Symb. Logic44 (1979) 36-50.
- M. Davis, G. Logemann and D. Loveland, A machine program for theorem proving. Commun. ACM5 (1962) 394-397.
- M. Davis and H. Putnam, A computing procedure for quantification theory. J. ACM7 (1960) 201-215.
- J. Esteban and J.L. Toran, Space bounds for resolution, edited by C. Meinel and S. Tison, in STACS 99: 16th Annual Symposium on Theoretical Aspects of Computer Science, Trier, Germany, March 1999, Proceedings. Springer-Verlag, Lecture Notes in Comput. Sci. 1563 (1999) 551-560.
- A. Goerdt, A threshold for unsatisfiability. J. Comput. System Sci.53 (1996) 469-486.
- T. Hagerup and C. Rüb, A guided tour of Chernoff bounds. Inform. Process. Lett.33 (1989) 305-308.
- A.C. Kaporis, L.M. Kirousis, Y.C. Stamatiou, M. Vamvakari and M. Zito, Coupon collectors, q-binomial coefficients and the unsatisfiability threshold, edited by A. Restivo, S. Ronchi della Rocca and L. Roversi. Theoret. Comput. Sci., in 7th Italian Conference, ICTCS 2001. Springer-Verlag, Lecture Notes in Comput. Sci. 2202 (2001) 328-338.
- R. Bruce King, Beyond the quartic equation. Birkhauser, Boston, MA (1996).
- R. Bruce King and E. Rodney Canfield, An algorithm for calculating the roots of a general quintic equation from its coefficients. J. Math. Phys.32 (1991) 823-825.
- I. Stewart, Galois Theory. Chapman and Hall, London (1973).
- J. Toran, Lower bounds for the space used in resolution, edited by J. Flum and M. Rodriguez-Artalejo, in Computer Science Logic: 13th International Workshop, CSL'99, 8th Annual Conference of the EACSL, Madrid, Spain, September 20-25, 1999, Proceedings. Springer-Verlag, Lecture Notes in Comput. Sci. 1683 (1999).
- B.L. van der Wärden, Algebra. Frederick Ungar Publishing Co., New York (1970).
- R.C. Weast, Handbook of Tables for Mathematics. Cleveland: The Chemical Rubber Co. (1964).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.