On the Topological Complexity of Infinitary Rational Relations
RAIRO - Theoretical Informatics and Applications (2010)
- Volume: 37, Issue: 2, page 105-113
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topFinkel, Olivier. "On the Topological Complexity of Infinitary Rational Relations ." RAIRO - Theoretical Informatics and Applications 37.2 (2010): 105-113. <http://eudml.org/doc/92716>.
@article{Finkel2010,
abstract = {
We prove in this paper that there exists some infinitary rational
relations
which are analytic but non Borel sets, giving
an answer to a question of Simonnet [20].
},
author = {Finkel, Olivier},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Infinitary rational relations; topological properties; Borel and
analytic sets.},
language = {eng},
month = {3},
number = {2},
pages = {105-113},
publisher = {EDP Sciences},
title = {On the Topological Complexity of Infinitary Rational Relations },
url = {http://eudml.org/doc/92716},
volume = {37},
year = {2010},
}
TY - JOUR
AU - Finkel, Olivier
TI - On the Topological Complexity of Infinitary Rational Relations
JO - RAIRO - Theoretical Informatics and Applications
DA - 2010/3//
PB - EDP Sciences
VL - 37
IS - 2
SP - 105
EP - 113
AB -
We prove in this paper that there exists some infinitary rational
relations
which are analytic but non Borel sets, giving
an answer to a question of Simonnet [20].
LA - eng
KW - Infinitary rational relations; topological properties; Borel and
analytic sets.
UR - http://eudml.org/doc/92716
ER -
References
top- M.-P. Béal and O. Carton, Determinization of Transducers over Infinite Words, in ICALP'2000, edited by U. Montanari et al. Springer, Lect. Notes Comput. Sci. 1853 (2000) 561-570.
- J. Berstel, Transductions and Context Free Languages. Teubner Verlag (1979).
- J.R. Büchi, On a Decision Method in Restricted Second Order Arithmetic, Logic Methodology and Philosophy of Science, in Proc. 1960 Int. Congr. Stanford University Press (1962) 1-11.
- Ch. Choffrut, Une Caractérisation des Fonctions Séquentielles et des Fonctions Sous-Séquentielles en tant que Relations Rationnelles. Theoret. Comput. Sci.5 (1977) 325-338.
- Ch. Choffrut and S. Grigorieff, Uniformization of Rational Relations, Jewels are Forever, edited by J. Karhumäki, H. Maurer, G. Paun and G. Rozenberg. Springer (1999) 59-71.
- J. Duparc, O. Finkel and J.-P. Ressayre, Computer Science and the Fine Structure of Borel Sets. Theoret. Comput. Sci.257 (2001) 85-105.
- J. Engelfriet and H.J. Hoogeboom, X-Automata on ω-Words. Theoret. Comput. Sci.110 (1993) 1-51.
- F. Gire, Relations Rationnelles Infinitaires, Thèse de troisième cycle, Université Paris-7, France (1981).
- F. Gire, Une Extension aux Mots Infinis de la Notion de Transduction Rationnelle, in 6th GI Conf. Springer, Lect. Notes Comput. Sci. 145 (1983) 123-139.
- F. Gire and M. Nivat, Relations Rationnelles Infinitaires. Calcolo XXI (1984) 91-125.
- A.S. Kechris, Classical Descriptive Set Theory. Springer-Verlag (1995).
- K. Kuratowski, Topology. Academic Press, New York (1966).
- L.H. Landweber, Decision Problems for ω-Automata. Math. Syst. Theory3 (1969) 376-384.
- H. Lescow and W. Thomas, Logical Specifications of Infinite Computations, in A Decade of Concurrency, edited by J.W. de Bakker et al. Springer, Lect. Notes Comput. Sci. 803 (1994) 583-621.
- Y.N. Moschovakis, Descriptive Set Theory. North-Holland, Amsterdam (1980).
- D. Niwinski, An Example of Non Borel Set of Infinite Trees Recognizable by a Rabin Automaton, in Polish, Manuscript. University of Warsaw (1985).
- D. Perrin and J.-E. Pin, Infinite Words, Book in preparation, available from http://www.liafa.jussieu.fr/jep/InfiniteWords.html
- J.-E. Pin, Logic, Semigroups and Automata on Words. Ann. Math. Artificial Intelligence16 (1996) 343-384.
- C. Prieur, Fonctions Rationnelles de Mots Infinis et Continuité, Thèse de Doctorat, Université Paris-7, France (2000).
- P. Simonnet, Automates et Théorie Descriptive, Ph.D. thesis, Université Paris-7, France (1992).
- P. Simonnet, Automate d'Arbres Infinis et Choix Borélien. C. R. Acad. Sci. Paris Sér. I Math.316 (1993) 97-100.
- L. Staiger, Hierarchies of Recursive ω-Languages. J. Inform. Process. Cybernetics EIK22 (1986) 219-241.
- L. Staiger, ω-Languages, Handbook of Formal languages, Vol. 3, edited by G. Rozenberg and A. Salomaa. Springer-Verlag, Berlin (1997).
- W. Thomas, Automata on Infinite Objects, edited by J. Van Leeuwen. Elsevier, Amsterdam, Handb. Theoret. Comput. Sci. B (1990) 133-191.
Citations in EuDML Documents
top- Olivier Finkel, Undecidability of topological and arithmetical properties of infinitary rational relations
- Olivier Finkel, Undecidability of Topological and Arithmetical Properties of Infinitary Rational Relations
- Benoit Cagnard, Pierre Simonnet, Automata, Borel functions and real numbers in Pisot base
- Olivier Carton, Olivier Finkel, Pierre Simonnet, On the continuity set of an Omega rational function
- Olivier Finkel, Highly Undecidable Problems For Infinite Computations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.