Regular languages definable by Lindström quantifiers
RAIRO - Theoretical Informatics and Applications (2010)
- Volume: 37, Issue: 3, page 179-241
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topÉsik, Zoltán, and Larsen, Kim G.. "Regular languages definable by Lindström quantifiers." RAIRO - Theoretical Informatics and Applications 37.3 (2010): 179-241. <http://eudml.org/doc/92721>.
@article{Ésik2010,
abstract = {
In our main result, we establish a formal connection between
Lindström quantifiers with respect to regular languages and
the double semidirect product of finite monoids
with a distinguished set of generators.
We use this correspondence to characterize the expressive power
of Lindström quantifiers associated with a class of regular
languages.
},
author = {Ésik, Zoltán, Larsen, Kim G.},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Regular language; logic; Lindström quantifier;
expressive power; semidirect product.; regular languages; Lindström quantifiers; expressive powers; semidirect products},
language = {eng},
month = {3},
number = {3},
pages = {179-241},
publisher = {EDP Sciences},
title = {Regular languages definable by Lindström quantifiers},
url = {http://eudml.org/doc/92721},
volume = {37},
year = {2010},
}
TY - JOUR
AU - Ésik, Zoltán
AU - Larsen, Kim G.
TI - Regular languages definable by Lindström quantifiers
JO - RAIRO - Theoretical Informatics and Applications
DA - 2010/3//
PB - EDP Sciences
VL - 37
IS - 3
SP - 179
EP - 241
AB -
In our main result, we establish a formal connection between
Lindström quantifiers with respect to regular languages and
the double semidirect product of finite monoids
with a distinguished set of generators.
We use this correspondence to characterize the expressive power
of Lindström quantifiers associated with a class of regular
languages.
LA - eng
KW - Regular language; logic; Lindström quantifier;
expressive power; semidirect product.; regular languages; Lindström quantifiers; expressive powers; semidirect products
UR - http://eudml.org/doc/92721
ER -
References
top- M.A. Arbib (ed.), Algebraic Theory of Machines, Languages, and Semigroups. With a major contribution by K. Krohn and J.L. Rhodes, Academic Press (1968).
- D.A.M. Barrington, K. Compton, H. Straubing and D. Therien, Regular languages in NC1. J. Comput. System Sci.44 (1992) 478-499.
- D. Barrington, N. Immerman and H. Straubing: On uniformity within NC1. J. Comput. System Sci.41 (1990) 274-306.
- A. Baziramwabo, P. McKenzie and D. Therien, Modular temporal logic, in: 14th Annual IEEE Symposium on Logic in Computer Science, Trento (1999). IEEE Computer Society, 344-351.
- D. Beauquier and A. Rabinovitch, Monadic logic of order over naturals has no finite base. J. Logic and Comput. (to appear).
- J.R. Büchi, Weak second order logic and finite automata. Zeit. Math. Logik Grund. Math.6 (1960) 66-92.
- H.-J. Burtschick and H. Vollmer, Lindström quantifiers and leaf language definability. Int. J. Found. Comput. Sci.9 (1998) 277-294.
- J. Cohen, D. Perrin and J.-E. Pin, On the expressive power of temporal logic. J. Comput. System Sci.46 (1993) 271-294.
- P. Dömösi and Z. Ésik, Critical classes for the α0-product. Theoret. Comput. Sci.61 (1988) 17-24.
- H.-J. Ebbinghaus and J. Flum, Finite Model Theory. 2nd ed., Springer (1999).
- S. Eilenberg, Automata, Languages, and Machines. vol. A and B, Academic Press (1974, 1976).
- C. Elgot, Decision problems of finite automata design and related arithmetics. Trans. Amer. Math. Soc.98 (1961) 21-51.
- Z. Ésik, Results on homomorphic realization of automata by α0-products. Theoret. Comput. Sci.87 (1991) 229-249.
- Z. Ésik and M. Ito, Temporal logic with cyclic counting and the degree of aperiodicity of finite automata. Acta Cybernet.16 (2003) 1-28.
- M. Galota and H. Vollmer, A generalization of the Büchi-Elgot-Trakhtenbrot theorem, in: Computer Science Logic, 15th International Workshop, CSL (2001), Paris (2001), LNCS 2142, Springer, 355-368.
- N. Immerman, Descriptive Complexity. Graduate Texts in Computer Science, Springer-Verlag, New York (1999).
- K. Krohn and J. Rhodes, Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines. Trans. Amer. Math. Soc.116 (1965) 450-464.
- C. Lautemann, P. McKenzie and Th. Schwentick, The descriptive complexity approach to LOGCFL. J. Comput. System Sci.62 (2001) 629-652.
- P. Lindström, First order predicate logic with generalized quantifiers. Theoria32 (1966) 186-195.
- P. McKenzie, Th. Schwentick, D. Therien and H. Vollmer, The many faces of a translation, in: Automata, Languages and Programming, 27th International Colloquium, ICALP'00, LNCS 1853, 890-901.
- W.D. Maurer and J.L. Rhodes, A property of finite simple non-abelian groups, Proc. Amer. Math. Soc.16 (1965) 552-554.
- R. McNaughton and S. Papert, Counter-Free Automata. MIT Press (1971).
- T. Peichl and H. Vollmer, Finite automata with generalized acceptance criteria, in: Automata, Languages and Programming, 26th International Colloquium, ICALP'99, Prague, LNCS 1644, Springer, 605-614.
- J.-E. Pin, Varieties of Formal Languages. Plenum (1986).
- J.-E. Pin, Logic, semigroups and automata on words, Ann. Math. Artif. Intell.16 (1996) 343-384.
- A. Pnueli, The temporal logic of programs, in: 18th IEEE Symp. Foundations of Computer Science, Providence (1977) 46-57.
- J. Rhodes, Undecidability, automata, and pseudo-varieties of finite semigroups, Int. J. Algebra and Comput.9 (1999) 455-473.
- J. Rhodes and B. Tilson, The kernel of monoid morphisms, J. Pure Appl. Algebra62 (1989) 227-268.
- M.P. Schützenberger, On finite monoids having only trivial subgroup. Inf. and Control8 (1965) 190-194.
- H. Straubing, Families of recognizable sets corresponding to certain varieties of finite monoids. J. Pure Appl. Algebra15 (1979) 305-318.
- H. Straubing, Finite Automata, Formal Logic, and Circuit Complexity. Birkhauser (1994).
- H. Straubing, On logical descriptions of regular languages, in: LATIN 2002, LNCS 2286, Springer (2002) 528-538.
- H. Straubing and D. Therien, Regular languages defined with a bounded number of variables, in: STACS 2001, LNCS 2010, Springer (2001) 555-562.
- H. Straubing, D. Therien and W. Thomas, Regular languages defined with generalized quantifiers, Automata, languages and programming (Tampere, 1988), Lecture Notes in Comput. Sci. 317, Springer, Berlin (1988) 561-575.
- H. Straubing, D. Therien and W. Thomas, Regular languages defined with generalized quantifiers. Inf. and Comput.118 (1995) 289-301.
- D. Therien, Classification of finite monoids: The language approach. Theoret. Comput. Sci.14 (1981) 195-208.
- D. Therien and Th. Wilke, Temporal logic and semidirect products: An effective characterization of the until hierarchy, in: 37th Annual Symposium on Foundations of Computer Science, FOCS '96, Burlington. IEEE Computer Society (1996) 256-263.
- W. Thomas, Automata on infinite objects, in Handbook of Theoretical Computer Science. Vol. B, Elsevier, Amsterdam (1990) 133-191.
- W. Thomas, Languages, automata, and logic, in: Handbook of Formal Languages. Vol. 3, Springer (1997) 389-455.
- B.A. Trakhtenbrot, Finite automata and logic of monadic predicates, Dokl. Akad. Nauk SSSR140 (1961) 326-329.
- J. Väänänen (ed.), Generalized Quantifiers and Computation, LNCS 1754, Springer (1997).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.