Complexity of infinite words associated with beta-expansions
Christiane Frougny; Zuzana Masáková; Edita Pelantová
RAIRO - Theoretical Informatics and Applications (2010)
- Volume: 38, Issue: 2, page 163-185
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topFrougny, Christiane, Masáková, Zuzana, and Pelantová, Edita. "Complexity of infinite words associated with beta-expansions." RAIRO - Theoretical Informatics and Applications 38.2 (2010): 163-185. <http://eudml.org/doc/92737>.
@article{Frougny2010,
abstract = {
We study the complexity of the infinite word uβ associated with the
Rényi expansion of 1 in an irrational base β > 1.
When β is the golden ratio, this is the well known Fibonacci word,
which is Sturmian, and of complexity C(n) = n + 1.
For β such that
dβ(1) = t1t2...tm is finite we provide a simple description of
the structure of special factors of the word uβ. When tm=1
we show that
C(n) = (m - 1)n + 1. In the cases when t1 = t2 = ... tm-1or
t1 > max\{t2,...,tm-1\} we show that the first difference
of the complexity function C(n + 1) - C(n ) takes value in
\{m - 1,m\} for every n, and consequently we determine the
complexity of uβ. We show that
uβ is an Arnoux-Rauzy sequence if and only if
dβ(1) = tt...t1. On the example of
β = 1 + 2cos(2π/7), solution of X3 = 2X2 + X - 1, we illustrate
that the structure of special factors is more complicated for
dβ(1) infinite eventually periodic.
The complexity for this word is equal to 2n+1.
},
author = {Frougny, Christiane, Masáková, Zuzana, Pelantová, Edita},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Beta-expansions; complexity of infinite words.},
language = {eng},
month = {3},
number = {2},
pages = {163-185},
publisher = {EDP Sciences},
title = {Complexity of infinite words associated with beta-expansions},
url = {http://eudml.org/doc/92737},
volume = {38},
year = {2010},
}
TY - JOUR
AU - Frougny, Christiane
AU - Masáková, Zuzana
AU - Pelantová, Edita
TI - Complexity of infinite words associated with beta-expansions
JO - RAIRO - Theoretical Informatics and Applications
DA - 2010/3//
PB - EDP Sciences
VL - 38
IS - 2
SP - 163
EP - 185
AB -
We study the complexity of the infinite word uβ associated with the
Rényi expansion of 1 in an irrational base β > 1.
When β is the golden ratio, this is the well known Fibonacci word,
which is Sturmian, and of complexity C(n) = n + 1.
For β such that
dβ(1) = t1t2...tm is finite we provide a simple description of
the structure of special factors of the word uβ. When tm=1
we show that
C(n) = (m - 1)n + 1. In the cases when t1 = t2 = ... tm-1or
t1 > max{t2,...,tm-1} we show that the first difference
of the complexity function C(n + 1) - C(n ) takes value in
{m - 1,m} for every n, and consequently we determine the
complexity of uβ. We show that
uβ is an Arnoux-Rauzy sequence if and only if
dβ(1) = tt...t1. On the example of
β = 1 + 2cos(2π/7), solution of X3 = 2X2 + X - 1, we illustrate
that the structure of special factors is more complicated for
dβ(1) infinite eventually periodic.
The complexity for this word is equal to 2n+1.
LA - eng
KW - Beta-expansions; complexity of infinite words.
UR - http://eudml.org/doc/92737
ER -
References
top- J.-P. Allouche, Sur la complexité des suites infinies. Bull. Belg. Math. Soc. Simon Stevin1 (1994) 133-143.
- P. Arnoux et G. Rauzy, Représentation géométrique de suites de complexité 2n + 1. Bull. Soc. Math. France119 (1991) 199-215.
- J. Berstel, Recent results on extensions of Sturmian words. J. Algebra Comput.12 (2003) 371-385.
- A. Bertrand, Développements en base de Pisot et répartition modulo 1. C. R. Acad. Sci. Paris285A (1977) 419-421.
- A. Bertrand-Mathis, Comment écrire les nombres entiers dans une base qui n'est pas entière. Acta Math. Acad. Sci. Hungar.54 (1989) 237-241.
- J. Cassaigne, Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. Simon Stevin4 (1997) 67-88.
- J. Cassaigne, S. Ferenczi and L. Zamboni, Imbalances in Arnoux-Rauzy sequences. Ann. Inst. Fourier50 (2000) 1265-1276.
- S. Fabre, Substitutions et β-systèmes de numération. Theoret. Comput. Sci.137 (1995) 219-236.
- Ch. Frougny, J.-P. Gazeau and R. Krejcar, Additive and multiplicative properties of point sets based on beta-integers. Theoret. Comput. Sci.303 (2003) 491-516.
- M. Lothaire, Algebraic combinatorics on words. Cambridge University Press (2002).
- W. Parry, On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar.11 (1960) 401-416.
- J. Patera, Statistics of substitution sequences. On-line computer program, available at URIhttp://kmlinux.fjfi.cvut.cz/~patera/SubstWords.cgi
- A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar.8 (1957) 477-493.
- K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc.12 (1980) 269-278.
- W.P. Thurston, Groups, tilings, and finite state automata. Geometry supercomputer project research report GCG1, University of Minnesota (1989).
- O. Turek, Complexity and balances of the infinite word of β-integers for β = 1 + √3, in Proc. of Words'03, Turku. TUCS Publication 27 (2003) 138-148.
Citations in EuDML Documents
top- Christiane Frougny, Zuzana Masáková, Edita Pelantová, Corrigendum : “Complexity of infinite words associated with beta-expansions”
- Christiane Frougny, Zuzana Masáková, Edita Pelantová, Corrigendum: Complexity of infinite words associated with beta-expansions
- Ondřej Turek, Balance properties of the fixed point of the substitution associated to quadratic simple Pisot numbers
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.