Équation de transport. Théorie spectrale et approximation de la diffusion
Journées équations aux dérivées partielles (1982)
- page 1-10
- ISSN: 0752-0360
Access Full Article
topHow to cite
topBardos, Claude. "Équation de transport. Théorie spectrale et approximation de la diffusion." Journées équations aux dérivées partielles (1982): 1-10. <http://eudml.org/doc/93083>.
@article{Bardos1982,
author = {Bardos, Claude},
journal = {Journées équations aux dérivées partielles},
keywords = {review; transport equation; diffusion approximation; first eigenvalue; critical size},
language = {fre},
pages = {1-10},
publisher = {Ecole polytechnique},
title = {Équation de transport. Théorie spectrale et approximation de la diffusion},
url = {http://eudml.org/doc/93083},
year = {1982},
}
TY - JOUR
AU - Bardos, Claude
TI - Équation de transport. Théorie spectrale et approximation de la diffusion
JO - Journées équations aux dérivées partielles
PY - 1982
PB - Ecole polytechnique
SP - 1
EP - 10
LA - fre
KW - review; transport equation; diffusion approximation; first eigenvalue; critical size
UR - http://eudml.org/doc/93083
ER -
References
top- [1] C. Bardos, R. Santos, R. Sentis : A paraître.
- [2] A. Bensoussan, J. L. Lions et G. Papanicolaou : Boundary Layerand homogeneizat of transport process. Publ. R.I.M.S. Kyoto 15 (1979) 53-157. Zbl0408.60100MR80i:60122
- [3] M. Case et P. Zweifel : Linear transport theory. Addison Wesley, New York 1967 Zbl0162.58903
- [4] S. Chandrasekhar : Radiative transfer. Dover, New York, 1953.
- [5] T. Kato : Perturbation Theory for linear operators. Zbl0148.12601
- [6] M. G. Krein et M. Rutman : Linear operators leaving invariant a cone in a Banach space. A.M.S. Translation n° 26, 1950. MR12,341b
- [7] E. Larsen et M. Keller : Asymptotic solution of Neutron transport problem. J. Math. Phys. 15 (1974) 75-81.
- [8] J. Lehner et G. Wing : On the spectrum of an asymmetric operator arising in the transport theory of neutrons. Comm. Pure Appl. Math. 8 (1955) 217-234. Zbl0064.23004MR16,1120f
- [9] R. Sentis : Thèse, Paris-Dauphine, 1981.
- [10] J. Smul'yan : Completly continuous perturbation of operators. Dopl. Akad. Nauk. SSSR 101 (1955), 35-38.
- [11] I. Vidav : Existence and uniqueness of non negative eigenfunction of the Boltzman operator. Journal of Math. Analysis and Application 22, 144-155 (1968). Zbl0155.19203MR37 #6093
- [12] A. Weinberg et P. Wigner : The physical theory of neutron chain reactors. University of Chicago Press (1958).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.