Existence of solutions for transversally elliptic left invariant differential operators on nilpotent Lie groups

Linda P. Rothschild

Journées équations aux dérivées partielles (1983)

  • page 1-6
  • ISSN: 0752-0360

How to cite

top

Rothschild, Linda P.. "Existence of solutions for transversally elliptic left invariant differential operators on nilpotent Lie groups." Journées équations aux dérivées partielles (1983): 1-6. <http://eudml.org/doc/93089>.

@article{Rothschild1983,
author = {Rothschild, Linda P.},
journal = {Journées équations aux dérivées partielles},
keywords = {existence, transversally elliptic left invariant differential operators; nilpotent Lie groups},
language = {eng},
pages = {1-6},
publisher = {Ecole polytechnique},
title = {Existence of solutions for transversally elliptic left invariant differential operators on nilpotent Lie groups},
url = {http://eudml.org/doc/93089},
year = {1983},
}

TY - JOUR
AU - Rothschild, Linda P.
TI - Existence of solutions for transversally elliptic left invariant differential operators on nilpotent Lie groups
JO - Journées équations aux dérivées partielles
PY - 1983
PB - Ecole polytechnique
SP - 1
EP - 6
LA - eng
KW - existence, transversally elliptic left invariant differential operators; nilpotent Lie groups
UR - http://eudml.org/doc/93089
ER -

References

top
  1. [1] Boutet de Monvel, L., Grigis, A., and Helffer, B., Paramétrixes d'Opérateurs Pseudo-Differentiels à Caracteristiques Multiples, Astérisque 34-35 (1976), pp. 93-121. Zbl0344.32009MR58 #12046
  2. [2] Corwin, L., and Rothschild, L. P., Necessary Conditions for Local Solvability of Homogeneous Left Invariant Differential Operators on Nilpotent Lie Groups, Acta Math. 147 (1981), pp. 265-288. Zbl0486.22006MR83b:22010
  3. [3] Corwin, L., and Rothschild, L. P., Solvability of Transversally Elliptic Differential Operators on Nilpotent Lie Groups, preprint. Zbl0609.35086
  4. [4] Geller, D., preprint. 
  5. [5] Helffer, B. and Nourrigat, J., Caracterisation des Operateurs Hypoélliptiques Homogènes Invariants à Gauche sur une Groupe de Lie Nilpotent Gradué. Comm. P.D.E. 4 (8) (1979) 899-958. Zbl0423.35040MR81i:35034
  6. [6] Grigis, A., and Rothschild, L.P., A Criterion for Analytic Hypoellipticity for a Class of Differential Operators with Polynomial Coefficients, Annals of Math., to appear. Zbl0541.35017
  7. [7] Kato, T., Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin 1976. Zbl0342.47009MR53 #11389
  8. [8] Lévy-Bruhl, P., Résolubilité de Certain Opérateurs Invariants du Second Ordre sur les Groupes de Lie Nilpotents de Rang Deux, Bull. Sci. Math. 104 (1980), pp. 369-391. Zbl0454.22004MR82d:58067
  9. [9] Lévy-Bruhl, P., Résolubilité Locale d'Opérateurs Homogènes Invariants Gauche sur Certains Groupes de Lie Nilpotents de Rang Trois, preprint. Zbl0461.35015
  10. [10] Lévy-Bruhl, P., Application de la Formule de Plancherel à la Résolubilité d'Opérateurs Invariants à Gauche sur des Groupes de Lie Nilpotent d'Ordre Deux, Bull. Sci. Math (2) 106 (1982) pp. 171-191. Zbl0485.35019MR84b:58104
  11. [11] Lévy-Bruhl, P., Résolubilité Locale d'Opérateurs Non Homogènes sur des Groupes de Lie Nilpotents Gradués, preprint. Zbl0461.35015
  12. [12] Lojasiewicz, S., Sur le Problème de Division, Studia Math. 18 (1959), pp. 87-136. Zbl0115.10203MR21 #5893
  13. [13] Melin, A., Parametrix Constructions for some Classes of Right-Invariant Differential Operators on the Heisenberg Group. Comm. P.D.E. (to appear). Zbl0486.35007
  14. [14] Métivier, G., Equations aux Dérivées Partielles sur les Groupes de Lie Nilpotents, Sem. Bourbaki, Exposé #583, 1981. Zbl0497.22011
  15. [15] Rothschild, L.P., Local Solvability of Second Order Differential Operators on Nilpotent Lie Groups, Ark. Math., 19 (1981), pp. 145-175. Zbl0485.35018MR84e:58080
  16. [16] Rothschild, L. P., and Stein, E. M., Hypoelliptic Differential Operators and Nilpotent Lie Groups, Acta Math. 137 (1976), pp. 247-320. Zbl0346.35030MR55 #9171
  17. [17] Rothschild, L. P. and Tartakoff, D., Inversion of Analytic Matrices and Local Solvability of Some Invariant Differential Operators on Nilpotent Lie Groups, Comm. P.D.E. 6 (1981), pp. 625-650. Zbl0477.58032MR84g:22026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.