Semilinear wave equations with angularly smooth data

Michael Beals

Journées équations aux dérivées partielles (1984)

  • page 1-5
  • ISSN: 0752-0360

How to cite

top

Beals, Michael. "Semilinear wave equations with angularly smooth data." Journées équations aux dérivées partielles (1984): 1-5. <http://eudml.org/doc/93105>.

@article{Beals1984,
author = {Beals, Michael},
journal = {Journées équations aux dérivées partielles},
keywords = {semilinear; propagation of singularities; singularities of the data; smooth data; caustics; angularly smooth},
language = {eng},
pages = {1-5},
publisher = {Ecole polytechnique},
title = {Semilinear wave equations with angularly smooth data},
url = {http://eudml.org/doc/93105},
year = {1984},
}

TY - JOUR
AU - Beals, Michael
TI - Semilinear wave equations with angularly smooth data
JO - Journées équations aux dérivées partielles
PY - 1984
PB - Ecole polytechnique
SP - 1
EP - 5
LA - eng
KW - semilinear; propagation of singularities; singularities of the data; smooth data; caustics; angularly smooth
UR - http://eudml.org/doc/93105
ER -

References

top
  1. [1] M. Beals, Self-spreading and strength of singularities for solutions to semilinear wave equations, Ann. of Math. 118 (1983), 187-214. Zbl0522.35064MR85c:35057
  2. [2] M. Beals, Nonlinear wave equations with data singular at one point, Contemp. Math. 27 (1984), 83-95. Zbl0552.35055MR85f:35140
  3. [3] J. Berning and M. Reed, Reflection of singularities of one-dimensional wave equations at boundaries, Journ. Math. Anal. Appl. 72 (1979), 635-653. Zbl0435.35055MR81e:35084
  4. [4] J.M. Bony, Interaction des singularities pour les équations aux derivees partielles non lineaires, Sem. Joulaouic-Schwartz (1981-1982), exp. n° 2. Zbl0498.35017
  5. [5] J.M. Bony, Interaction des singularities pour les equations de Klein-Jordon non lineaires, Sem. Joulaouic-Schwartz (1983-1984), exp. n° 10. Zbl0555.35118
  6. [6] J.M. Bony, Propagation et interaction des singularities pour les solutions des equations aux derivees partielles non lineaires, (preprint). Zbl0573.35014
  7. [7] R. Melrose and N. Ritter, Interaction of nonlinear progressing waves, (preprint). Zbl0575.35063
  8. [8] J. Rauch and M. Reed, Propagation of singularities for semilinear hyperbolic equations in one space variable, Ann. of Math. 111 (1980), 531-552. Zbl0432.35055MR81h:35028
  9. [9] J. Rauch and M. Reed, Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension, Duke Math. J. 49 (1982), 397-475. Zbl0503.35055MR83m:35098
  10. [10] J. Rauch and M. Reed, Striated solutions of semilinear two speed wave equations, (preprint). Zbl0537.35057

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.