Singularities of the scattering kernel for non convex obstacles

Vesselin M. Petkov; Luchezar N. Stoyanov

Journées équations aux dérivées partielles (1987)

  • page 1-10
  • ISSN: 0752-0360

How to cite

top

Petkov, Vesselin M., and Stoyanov, Luchezar N.. "Singularities of the scattering kernel for non convex obstacles." Journées équations aux dérivées partielles (1987): 1-10. <http://eudml.org/doc/93145>.

@article{Petkov1987,
author = {Petkov, Vesselin M., Stoyanov, Luchezar N.},
journal = {Journées équations aux dérivées partielles},
keywords = {singularities; scattering kernel; wave equation; obstacle; asymptotics; scattering invariants; scattering data},
language = {eng},
pages = {1-10},
publisher = {Ecole polytechnique},
title = {Singularities of the scattering kernel for non convex obstacles},
url = {http://eudml.org/doc/93145},
year = {1987},
}

TY - JOUR
AU - Petkov, Vesselin M.
AU - Stoyanov, Luchezar N.
TI - Singularities of the scattering kernel for non convex obstacles
JO - Journées équations aux dérivées partielles
PY - 1987
PB - Ecole polytechnique
SP - 1
EP - 10
LA - eng
KW - singularities; scattering kernel; wave equation; obstacle; asymptotics; scattering invariants; scattering data
UR - http://eudml.org/doc/93145
ER -

References

top
  1. [1] Y. Colin de Verdière, Sur les longueurs des trajectoires périodiques d'un billard, pp. 122-139 dans Géométrie Symplectique et de Contact : Autour du théorème de Poincaré-Birkoff, Hermann, 1984. Zbl0599.58039MR86a:58078
  2. [2] C. Gérard, Asymptotique des poles de la matrice de scattering pour deux obstacles strictement convexes, Prépublication de l'Université Paris-Sud, 1986. Zbl0622.35054
  3. [3] V. Guillemin, Sojourn time and asymptotic properties of the scattering matrix, Publ. RIMS Kyoto Univ., 12, (1977), 69-88. Zbl0381.35064MR56 #6759
  4. [4] M. Ikawa, On the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ., 23, (1983), 127-194. Zbl0561.35060MR84e:35118
  5. [5] M. Ikawa, Precise information on the poles of the scattering matrix for two strictly convex obstacles, preprint, 1985. Zbl0637.35068
  6. [6] S. Marvizi, R. Melrose, Spectral invariants of convex planar regions, J. Diff. Geometry, 17, (1982) 475-502. Zbl0492.53033MR85d:58084
  7. [7] S. Nakamura, H. Soga, Singularities of the scattering kernel for two balls, preprint, 1986. Zbl0638.35068
  8. [8] V. Petkov, High frequency asymptotics of the scattering amplitude for non-convex bodies, Comm. Part. Diff. Equations, 5, (1980), 193-329. Zbl0435.35065MR82c:35061
  9. [9] V. Petkov, L. Stojanov, Periodic geodesics of generic non-convex domains in ℝ2 and the Poisson relation, Bull. Amer. Math. Soc., 15, (1986), 88-90. Zbl0602.58050MR87i:58173
  10. [10] V. Petkov et L. Stojanov, Propriétés génériques de l'application de Poincaré et des géodesiques périodiques généralisées, Seminaire Equations aux Dérivées Partielles, Ecole Polytechnique, Exposé XI, 1985 - 1986. Zbl0611.58048
  11. [11] V. Petkov, L. Stojanov, Spectrum of the Poincaré map for periodic reflecting rays in generic domains, Math. Z., 194, (1987), 505-518. Zbl0673.58035MR88d:58129
  12. [12] V. Petkov, L. Stojanov, Periods of multiple reflecting geodesics and inverse spectral results, Amer. J. Math., (to appear). Zbl0652.35027
  13. [13] Ya. G. Sinai, Development of Krylov ideas. An addendum to the book : N.S. Krylov, Works on the foundations of statistical physics, Princeton Univ. Press, 1979, 239-281. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.