Impurities in a periodic structure

Frédéric Klopp

Journées équations aux dérivées partielles (1990)

  • page 1-12
  • ISSN: 0752-0360

How to cite

top

Klopp, Frédéric. "Impuretés dans une structure périodique." Journées équations aux dérivées partielles (1990): 1-12. <http://eudml.org/doc/93216>.

@article{Klopp1990,
author = {Klopp, Frédéric},
journal = {Journées équations aux dérivées partielles},
keywords = {Schrödinger operators; semi-classical limit; periodic potentials; spectrum},
language = {fre},
pages = {1-12},
publisher = {Ecole polytechnique},
title = {Impuretés dans une structure périodique},
url = {http://eudml.org/doc/93216},
year = {1990},
}

TY - JOUR
AU - Klopp, Frédéric
TI - Impuretés dans une structure périodique
JO - Journées équations aux dérivées partielles
PY - 1990
PB - Ecole polytechnique
SP - 1
EP - 12
LA - fre
KW - Schrödinger operators; semi-classical limit; periodic potentials; spectrum
UR - http://eudml.org/doc/93216
ER -

References

top
  1. [ADH] S. Alama, P. Deift, R. Hempel, Eigenvalue branches of the Schrödinger operator H-λW in a gap of σ(H). Comm. Math. Phys., 121, 1989, 291-321. Zbl0676.47032MR90e:35046
  2. [B] F. Bentosela, Scattering from impurities in a crystal., Comm. Math. Phys. 46, 1976, 153-166. MR52 #14690
  3. [C] J. Callaway, Energy Band Theory., Academic Press, New York/London, 1964. Zbl0121.23303MR28 #5776
  4. [Ca] U. Carlsson, An infinite number of Wells in the semi-classical limit, Preprint de l'université de Lund, 1989 (à paraître dans Asymptotic Analysis). Zbl0727.35094
  5. [DH] P. Deift, R. Hempel, On the existence of eigenvalues of the Schrödinger operator H-λW in a gap of σ(H). Comm. Math. Phys., 103, 1986, 461-490. Zbl0594.34022MR87k:35184
  6. [GS] F. Gesztesy, B. Simon, On a theorem of Deift and Hempel., Comm. Math. Phys. 116, 1988, 503-505. Zbl0647.35063MR89g:35080
  7. [HSj] B. Helffer, J. Sjöstrand, Multiple wells in the semi-classical limit 1, Comm. P.D.E 9 (4) 1984, 337-408. Zbl0546.35053
  8. [KS] M. Klaus, B. Simon, Coupling constant thresholds in non relativistic quantum mechanics., Ann. of Phys. 130, 1980, 251-281. Zbl0455.35112MR82h:81028a
  9. [LL] L. Landau, E. Lifschitz, Mecanique quantique, théorie non relativiste, Editions MIR, Moscou, 1966. Zbl0144.47605
  10. [O] A. Outassourt, Comportement semi-classique pour l'opérateur de Schrödinger à potentiel périodique, J. Funct. Anal. 72, 1987, 65-93. Zbl0662.35023MR88k:35049
  11. [P] A. Persson, Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator, Math. Scand. 8, 1960, 143-153. Zbl0145.14901MR24 #A3412
  12. [S1] B. Simon, Semi-classical analysis of low lying eigenvalues I. Nondegenerate minima: Asymptotic expansion., Annales I.H.P 38 (3), 1983, 295-307. Zbl0526.35027MR85m:81040a
  13. [S2] B. Simon, Semi-classical analysis of low lying eigenvalues III. Width of the ground state band in strongly coupled solids., Ann. of Phys. 158(2), 1984, 415-420. Zbl0596.35028MR87h:81045b
  14. [S3] B. Simon, The bound state of a weakly coupled Schrödinger operator in one or two dimensions., Ann. of Phys. 97, 1976, 279-288. Zbl0325.35029MR53 #8646
  15. [Sk] M.M. Skriganov, Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators., Proc. of the Steklov Inst. of Math., 2, 1987. Zbl0615.47004MR88g:47038

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.