Wigner series and (semi)classical limits with periodic potentials

Peter A. Markowich; Norbert J. Mauser; Frédéric Poupaud

Journées équations aux dérivées partielles (1993)

  • Volume: 1993, Issue: 16, page 1-13
  • ISSN: 0752-0360

How to cite

top

Markowich, Peter A., Mauser, Norbert J., and Poupaud, Frédéric. "Wigner series and (semi)classical limits with periodic potentials." Journées équations aux dérivées partielles 1993.16 (1993): 1-13. <http://eudml.org/doc/93267>.

@article{Markowich1993,
author = {Markowich, Peter A., Mauser, Norbert J., Poupaud, Frédéric},
journal = {Journées équations aux dérivées partielles},
keywords = {Wigner-Weyl transform; Vlasov equation; semiconductor device modelling; semiclassical Liouville equation},
language = {eng},
number = {16},
pages = {1-13},
publisher = {Ecole polytechnique},
title = {Wigner series and (semi)classical limits with periodic potentials},
url = {http://eudml.org/doc/93267},
volume = {1993},
year = {1993},
}

TY - JOUR
AU - Markowich, Peter A.
AU - Mauser, Norbert J.
AU - Poupaud, Frédéric
TI - Wigner series and (semi)classical limits with periodic potentials
JO - Journées équations aux dérivées partielles
PY - 1993
PB - Ecole polytechnique
VL - 1993
IS - 16
SP - 1
EP - 13
LA - eng
KW - Wigner-Weyl transform; Vlasov equation; semiconductor device modelling; semiclassical Liouville equation
UR - http://eudml.org/doc/93267
ER -

References

top
  1. [1] N.W. ASHCROFT and N.D. MERMIN. Solid State Physics. Holt, Rinehart, Winston, 1976. Zbl1107.82300
  2. [2] N.L. BALAZS and B.K. JENNINGS. Wigner and Other Distribution Functions in Mock Phase Spaces. Phys. Rep., 104:347-391, 1984. MR85k:81052
  3. [3] S. BIEVRE and J.A. GONZALEZ. Semiclassical Behaviour of the Weyl Correspondence on the Circle. Proc. XIX Int. Col. Group Theor. Meth. - Salamanca, Anales di Fisica, 1992. 
  4. [4] B. HELFFER and T. SJOSTRAND. Microlocal Analysis ... Springer Lecture Notes in Physics 345, 1989. 
  5. [5] P. KASPERKOVITZ and M. PEEV. Wigner-Weyl Formalisms for Toroidal Geometries. Technical report, TU Vienna, 1993. Zbl0794.46056
  6. [6] P.L. LIONS and T. PAUL. Sur les Mesures de Wigner. Revista Mat. Iberoamericana, to appear, 1993. Zbl0801.35117MR95a:58124
  7. [7] P.A. MARKOWICH and N.J. MAUSER. The Classical Limit of a Self-consistent Quantum-Vlasov Equation in 3-D. Math. Mod. and Meth. in Appl. Sciences, 3:109-124, 1993. Zbl0772.35061MR94e:82065
  8. [8] P.A. MARKOWICH, N.J. MAUSER, and F. POUPAUD. A Wigner Function Approach to (Semi) classical Limits : Electrons in a Periodic Potential. submitted to J. on Math. Phys. Zbl0805.35106
  9. [9] N.J. MAUSER. The Wigner-Poisson Problem in the One-Band Approximation. in preparation, 1993. 
  10. [10] P. GERARD. Mesures Semi-Classiques et Ondes de Bloch. Sem. Ecole Polytechnique, XVI, 1991. Zbl0739.35096MR92k:35068
  11. [11] M. REED and B. SIMON. Methods of Modern Mathematical Physics IV. Academic Press, 4th edition, 1987. Zbl0401.47001
  12. [12] K. TAKAHASHI. Distribution Functions in Classical and Quantum Mechanics. Prog. of Theor. Phys. Suppl., 98:109-156, 1989. MR91a:81051
  13. [13] V.I. TATARSKII. The Wigner Representation of Quantum Mechanics. Sov. Phys. Usb., 26:311-327, 1983. MR85k:81061
  14. [14] C.H. WILCOX. Theory of Bloch Waves. J. d'Analyse Mathematique, 33:146 - 167, 1978. Zbl0408.35067MR82b:82068

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.