Wigner series and (semi)classical limits with periodic potentials
Peter A. Markowich; Norbert J. Mauser; Frédéric Poupaud
Journées équations aux dérivées partielles (1993)
- Volume: 1993, Issue: 16, page 1-13
- ISSN: 0752-0360
Access Full Article
topHow to cite
topMarkowich, Peter A., Mauser, Norbert J., and Poupaud, Frédéric. "Wigner series and (semi)classical limits with periodic potentials." Journées équations aux dérivées partielles 1993.16 (1993): 1-13. <http://eudml.org/doc/93267>.
@article{Markowich1993,
author = {Markowich, Peter A., Mauser, Norbert J., Poupaud, Frédéric},
journal = {Journées équations aux dérivées partielles},
keywords = {Wigner-Weyl transform; Vlasov equation; semiconductor device modelling; semiclassical Liouville equation},
language = {eng},
number = {16},
pages = {1-13},
publisher = {Ecole polytechnique},
title = {Wigner series and (semi)classical limits with periodic potentials},
url = {http://eudml.org/doc/93267},
volume = {1993},
year = {1993},
}
TY - JOUR
AU - Markowich, Peter A.
AU - Mauser, Norbert J.
AU - Poupaud, Frédéric
TI - Wigner series and (semi)classical limits with periodic potentials
JO - Journées équations aux dérivées partielles
PY - 1993
PB - Ecole polytechnique
VL - 1993
IS - 16
SP - 1
EP - 13
LA - eng
KW - Wigner-Weyl transform; Vlasov equation; semiconductor device modelling; semiclassical Liouville equation
UR - http://eudml.org/doc/93267
ER -
References
top- [1] N.W. ASHCROFT and N.D. MERMIN. Solid State Physics. Holt, Rinehart, Winston, 1976. Zbl1107.82300
- [2] N.L. BALAZS and B.K. JENNINGS. Wigner and Other Distribution Functions in Mock Phase Spaces. Phys. Rep., 104:347-391, 1984. MR85k:81052
- [3] S. BIEVRE and J.A. GONZALEZ. Semiclassical Behaviour of the Weyl Correspondence on the Circle. Proc. XIX Int. Col. Group Theor. Meth. - Salamanca, Anales di Fisica, 1992.
- [4] B. HELFFER and T. SJOSTRAND. Microlocal Analysis ... Springer Lecture Notes in Physics 345, 1989.
- [5] P. KASPERKOVITZ and M. PEEV. Wigner-Weyl Formalisms for Toroidal Geometries. Technical report, TU Vienna, 1993. Zbl0794.46056
- [6] P.L. LIONS and T. PAUL. Sur les Mesures de Wigner. Revista Mat. Iberoamericana, to appear, 1993. Zbl0801.35117MR95a:58124
- [7] P.A. MARKOWICH and N.J. MAUSER. The Classical Limit of a Self-consistent Quantum-Vlasov Equation in 3-D. Math. Mod. and Meth. in Appl. Sciences, 3:109-124, 1993. Zbl0772.35061MR94e:82065
- [8] P.A. MARKOWICH, N.J. MAUSER, and F. POUPAUD. A Wigner Function Approach to (Semi) classical Limits : Electrons in a Periodic Potential. submitted to J. on Math. Phys. Zbl0805.35106
- [9] N.J. MAUSER. The Wigner-Poisson Problem in the One-Band Approximation. in preparation, 1993.
- [10] P. GERARD. Mesures Semi-Classiques et Ondes de Bloch. Sem. Ecole Polytechnique, XVI, 1991. Zbl0739.35096MR92k:35068
- [11] M. REED and B. SIMON. Methods of Modern Mathematical Physics IV. Academic Press, 4th edition, 1987. Zbl0401.47001
- [12] K. TAKAHASHI. Distribution Functions in Classical and Quantum Mechanics. Prog. of Theor. Phys. Suppl., 98:109-156, 1989. MR91a:81051
- [13] V.I. TATARSKII. The Wigner Representation of Quantum Mechanics. Sov. Phys. Usb., 26:311-327, 1983. MR85k:81061
- [14] C.H. WILCOX. Theory of Bloch Waves. J. d'Analyse Mathematique, 33:146 - 167, 1978. Zbl0408.35067MR82b:82068
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.