The Riemann-Roch theorem for elliptic operators and solvability of elliptic equations with additional conditions on compact subsets
Mikhael Gromov; Mikhail A. Shubin
Journées équations aux dérivées partielles (1993)
- Volume: 1993, Issue: 18, page 1-13
- ISSN: 0752-0360
Access Full Article
topHow to cite
topGromov, Mikhael, and Shubin, Mikhail A.. "The Riemann-Roch theorem for elliptic operators and solvability of elliptic equations with additional conditions on compact subsets." Journées équations aux dérivées partielles 1993.18 (1993): 1-13. <http://eudml.org/doc/93269>.
@article{Gromov1993,
author = {Gromov, Mikhael, Shubin, Mikhail A.},
journal = {Journées équations aux dérivées partielles},
keywords = {general Riemann-Roch theorem; elliptic operators},
language = {eng},
number = {18},
pages = {1-13},
publisher = {Ecole polytechnique},
title = {The Riemann-Roch theorem for elliptic operators and solvability of elliptic equations with additional conditions on compact subsets},
url = {http://eudml.org/doc/93269},
volume = {1993},
year = {1993},
}
TY - JOUR
AU - Gromov, Mikhael
AU - Shubin, Mikhail A.
TI - The Riemann-Roch theorem for elliptic operators and solvability of elliptic equations with additional conditions on compact subsets
JO - Journées équations aux dérivées partielles
PY - 1993
PB - Ecole polytechnique
VL - 1993
IS - 18
SP - 1
EP - 13
LA - eng
KW - general Riemann-Roch theorem; elliptic operators
UR - http://eudml.org/doc/93269
ER -
References
top- [G-H] P. Griffiths, J. Harris : Principles of algebraic geometry. John Wiley & Sons, New York e.a., 1978. Zbl0408.14001MR80b:14001
- [G-S] M. Gromov, M.A. Shubin : The Riemann-Roch theorem for elliptic operators. In : I.M.Gelfand Seminar, part 1, American Math. Soc., Providence, R.I., 1993. (Also Preprint ETH, Zürich, 1991.) Zbl0802.58051MR94j:58163
- [H] L. Hörmander : The analysis of linear partial differential operators, vol. III. Springer-Verlag, Berlin e.a., 1985. Zbl0601.35001
- [S] M.A. Shubin : Pseudodifferential operators and spectral theory. Springer, Berlin e.a., 1987. Zbl0616.47040MR88c:47105
- [St] E. Stein : Singular integrals and differentiability properties of functions. Princeton Univ. Press, 1970. Zbl0207.13501MR44 #7280
- [T] H. Triebel : Theory of function spaces. Birkhäuser, Boston, 1983. Zbl0546.46027
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.