The Riemann-Roch theorem for elliptic operators and solvability of elliptic equations with additional conditions on compact subsets

Mikhael Gromov; Mikhail A. Shubin

Journées équations aux dérivées partielles (1993)

  • Volume: 1993, Issue: 18, page 1-13
  • ISSN: 0752-0360

How to cite

top

Gromov, Mikhael, and Shubin, Mikhail A.. "The Riemann-Roch theorem for elliptic operators and solvability of elliptic equations with additional conditions on compact subsets." Journées équations aux dérivées partielles 1993.18 (1993): 1-13. <http://eudml.org/doc/93269>.

@article{Gromov1993,
author = {Gromov, Mikhael, Shubin, Mikhail A.},
journal = {Journées équations aux dérivées partielles},
keywords = {general Riemann-Roch theorem; elliptic operators},
language = {eng},
number = {18},
pages = {1-13},
publisher = {Ecole polytechnique},
title = {The Riemann-Roch theorem for elliptic operators and solvability of elliptic equations with additional conditions on compact subsets},
url = {http://eudml.org/doc/93269},
volume = {1993},
year = {1993},
}

TY - JOUR
AU - Gromov, Mikhael
AU - Shubin, Mikhail A.
TI - The Riemann-Roch theorem for elliptic operators and solvability of elliptic equations with additional conditions on compact subsets
JO - Journées équations aux dérivées partielles
PY - 1993
PB - Ecole polytechnique
VL - 1993
IS - 18
SP - 1
EP - 13
LA - eng
KW - general Riemann-Roch theorem; elliptic operators
UR - http://eudml.org/doc/93269
ER -

References

top
  1. [G-H] P. Griffiths, J. Harris : Principles of algebraic geometry. John Wiley & Sons, New York e.a., 1978. Zbl0408.14001MR80b:14001
  2. [G-S] M. Gromov, M.A. Shubin : The Riemann-Roch theorem for elliptic operators. In : I.M.Gelfand Seminar, part 1, American Math. Soc., Providence, R.I., 1993. (Also Preprint ETH, Zürich, 1991.) Zbl0802.58051MR94j:58163
  3. [H] L. Hörmander : The analysis of linear partial differential operators, vol. III. Springer-Verlag, Berlin e.a., 1985. Zbl0601.35001
  4. [S] M.A. Shubin : Pseudodifferential operators and spectral theory. Springer, Berlin e.a., 1987. Zbl0616.47040MR88c:47105
  5. [St] E. Stein : Singular integrals and differentiability properties of functions. Princeton Univ. Press, 1970. Zbl0207.13501MR44 #7280
  6. [T] H. Triebel : Theory of function spaces. Birkhäuser, Boston, 1983. Zbl0546.46027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.