Kelvin transformation and global nonlinear waves

Paul Godin

Journées équations aux dérivées partielles (1993)

  • Volume: 1993, Issue: 4, page 1-6
  • ISSN: 0752-0360

How to cite

top

Godin, Paul. "Transformation de Kelvin et ondes non linéaires globales." Journées équations aux dérivées partielles 1993.4 (1993): 1-6. <http://eudml.org/doc/93273>.

@article{Godin1993,
author = {Godin, Paul},
journal = {Journées équations aux dérivées partielles},
keywords = {nonlinear waves; global solutions; small initial data},
language = {fre},
number = {4},
pages = {1-6},
publisher = {Ecole polytechnique},
title = {Transformation de Kelvin et ondes non linéaires globales},
url = {http://eudml.org/doc/93273},
volume = {1993},
year = {1993},
}

TY - JOUR
AU - Godin, Paul
TI - Transformation de Kelvin et ondes non linéaires globales
JO - Journées équations aux dérivées partielles
PY - 1993
PB - Ecole polytechnique
VL - 1993
IS - 4
SP - 1
EP - 6
LA - fre
KW - nonlinear waves; global solutions; small initial data
UR - http://eudml.org/doc/93273
ER -

References

top
  1. [1] S. ALINHAC, Temps de vie et comportement explosif des solutions d'équations d'ondes quasilinéaires en dimension deux. I, prépublication 92-77 de l'Université de Paris-Sud, 1992 ; II, prépublication 93-23 de l'Université Paris-Sud, 1993. 
  2. [2] D. CHRISTODOULOU, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math. 39 (1986), 267-282. Zbl0612.35090MR87c:35111
  3. [3] P. GODIN, Global sound waves for quasilinear second order wave equations, preprint. Zbl0790.35071
  4. [4] P. GODIN, article en cours de rédaction. 
  5. [5] O. GUES, Développement asymptotique de solutions exactes de systèmes hyperboliques quasilinéaires, Asymptotic Analysis 6 (1993), 241-269. Zbl0780.35017MR94b:35067
  6. [6] S. HELGASON, Wave equations on homogeneous spaces, Springer Lecture Notes in Math. 1077 (1984), 254-287. Zbl0547.58037MR86c:58141
  7. [7] F. JOHN, Non-existence of global solutions of ▫u = ∂/∂tF(ut) in two and three space dimensions, Supplemento al Rendiconti del Circolo Matematico di Palermo ; Série II, 8 (1985), 229-249. Zbl0649.35060MR88c:35099
  8. [8] L. HÖRMANDER, The lifespan of classical solutions of non-linear hyperbolic equations, Springer Lecture Notes in Math. 1256 (1987), 214-280. Zbl0632.35045
  9. [9] S. KLAINERMAN, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math. 38 (1985), 321-332. Zbl0635.35059MR86i:35091
  10. [10] S. KLAINERMAN, The null condition and global existence to nonlinear wave equations, Lect. Appl. Math. 23, vol. I (1986), 293-326. Zbl0599.35105MR87h:35217
  11. [11] T.T. LI et Y.M. CHEN, Initial value problems for nonlinear wave equations, Comm. Part. Diff. Eq. 13 (1988), 383-422. Zbl0662.35071MR89e:35102
  12. [12] G. METIVIER, Ondes soniques, J. Math. Pures Appl. 70 (1991), 197-268. Zbl0728.35068MR92g:35045
  13. [13] K. MORAWETZ, Energy decay for star-shaped obstacles, dans P.D.LAX et R. PHILLIPS, Scattering theory, Academic Press (1967). 
  14. [14] J. SHATAH, Global existence of small solutions to nonlinear evolution equations, J. Diff. Eq. 46 (1982), 409-425. Zbl0518.35046MR84g:35036

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.