Kelvin transformation and global nonlinear waves
Journées équations aux dérivées partielles (1993)
- Volume: 1993, Issue: 4, page 1-6
- ISSN: 0752-0360
Access Full Article
topHow to cite
topGodin, Paul. "Transformation de Kelvin et ondes non linéaires globales." Journées équations aux dérivées partielles 1993.4 (1993): 1-6. <http://eudml.org/doc/93273>.
@article{Godin1993,
author = {Godin, Paul},
journal = {Journées équations aux dérivées partielles},
keywords = {nonlinear waves; global solutions; small initial data},
language = {fre},
number = {4},
pages = {1-6},
publisher = {Ecole polytechnique},
title = {Transformation de Kelvin et ondes non linéaires globales},
url = {http://eudml.org/doc/93273},
volume = {1993},
year = {1993},
}
TY - JOUR
AU - Godin, Paul
TI - Transformation de Kelvin et ondes non linéaires globales
JO - Journées équations aux dérivées partielles
PY - 1993
PB - Ecole polytechnique
VL - 1993
IS - 4
SP - 1
EP - 6
LA - fre
KW - nonlinear waves; global solutions; small initial data
UR - http://eudml.org/doc/93273
ER -
References
top- [1] S. ALINHAC, Temps de vie et comportement explosif des solutions d'équations d'ondes quasilinéaires en dimension deux. I, prépublication 92-77 de l'Université de Paris-Sud, 1992 ; II, prépublication 93-23 de l'Université Paris-Sud, 1993.
- [2] D. CHRISTODOULOU, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math. 39 (1986), 267-282. Zbl0612.35090MR87c:35111
- [3] P. GODIN, Global sound waves for quasilinear second order wave equations, preprint. Zbl0790.35071
- [4] P. GODIN, article en cours de rédaction.
- [5] O. GUES, Développement asymptotique de solutions exactes de systèmes hyperboliques quasilinéaires, Asymptotic Analysis 6 (1993), 241-269. Zbl0780.35017MR94b:35067
- [6] S. HELGASON, Wave equations on homogeneous spaces, Springer Lecture Notes in Math. 1077 (1984), 254-287. Zbl0547.58037MR86c:58141
- [7] F. JOHN, Non-existence of global solutions of ▫u = ∂/∂tF(ut) in two and three space dimensions, Supplemento al Rendiconti del Circolo Matematico di Palermo ; Série II, 8 (1985), 229-249. Zbl0649.35060MR88c:35099
- [8] L. HÖRMANDER, The lifespan of classical solutions of non-linear hyperbolic equations, Springer Lecture Notes in Math. 1256 (1987), 214-280. Zbl0632.35045
- [9] S. KLAINERMAN, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math. 38 (1985), 321-332. Zbl0635.35059MR86i:35091
- [10] S. KLAINERMAN, The null condition and global existence to nonlinear wave equations, Lect. Appl. Math. 23, vol. I (1986), 293-326. Zbl0599.35105MR87h:35217
- [11] T.T. LI et Y.M. CHEN, Initial value problems for nonlinear wave equations, Comm. Part. Diff. Eq. 13 (1988), 383-422. Zbl0662.35071MR89e:35102
- [12] G. METIVIER, Ondes soniques, J. Math. Pures Appl. 70 (1991), 197-268. Zbl0728.35068MR92g:35045
- [13] K. MORAWETZ, Energy decay for star-shaped obstacles, dans P.D.LAX et R. PHILLIPS, Scattering theory, Academic Press (1967).
- [14] J. SHATAH, Global existence of small solutions to nonlinear evolution equations, J. Diff. Eq. 46 (1982), 409-425. Zbl0518.35046MR84g:35036
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.