Divisor of the Selberg zeta function for kleinian groups
Journées équations aux dérivées partielles (1994)
- Volume: 1994, page 1-9
- ISSN: 0752-0360
Access Full Article
topHow to cite
topPerry, Peter A.. "Divisor of the Selberg zeta function for kleinian groups." Journées équations aux dérivées partielles 1994 (1994): 1-9. <http://eudml.org/doc/93293>.
@article{Perry1994,
author = {Perry, Peter A.},
journal = {Journées équations aux dérivées partielles},
keywords = {discrete group of isometries; closed geodesics; length spectrum; Selberg zeta-function; Laplace operator; Euler characteristic; Selberg trace formula; distribution of scattering poles},
language = {eng},
pages = {1-9},
publisher = {Ecole polytechnique},
title = {Divisor of the Selberg zeta function for kleinian groups},
url = {http://eudml.org/doc/93293},
volume = {1994},
year = {1994},
}
TY - JOUR
AU - Perry, Peter A.
TI - Divisor of the Selberg zeta function for kleinian groups
JO - Journées équations aux dérivées partielles
PY - 1994
PB - Ecole polytechnique
VL - 1994
SP - 1
EP - 9
LA - eng
KW - discrete group of isometries; closed geodesics; length spectrum; Selberg zeta-function; Laplace operator; Euler characteristic; Selberg trace formula; distribution of scattering poles
UR - http://eudml.org/doc/93293
ER -
References
top- [1] S. Agmon. On the spectral theory of the Laplacian on non-compact hyperbolic manifolds. Journées « Équations aux dérivées partielles » (Saint Jean de Monts, 1987), Exposée No. XVII, École Polytechnique, Palaiseau, 1987. Zbl0636.58037MR89c:58128
- [2] S. Agmon. On the representation theorem for solutions of the Helmholtz equation in hyperbolic space. Preprint, Forschungsinstitut für Mathematik, ETH-Zürich, 1990. Zbl0704.35018
- [3] Boas, R. P.Entire Functions. New York : Academic Press, 1954. Zbl0058.30201
- [4] R. Bowen. Symbolic dynamics for hyperbolic flows, Amer. Math. J. 95 (1973), 429-460. Zbl0282.58009MR49 #4041
- [5] D. Fried. The zeta functions of Ruelle and Selberg, I, Ann. scient. Éc. Norm. Sup. 19 (1986), 491-517. Zbl0609.58033MR88k:58134
- [6] R. Froese, P. Hislop, P. Perry. The Laplace operator on hyperbolic three-manifolds with cusps of non-maximal rank. Inventiones Math. 106 (1991), 295-333. Zbl0763.58028MR93b:11065
- [7] C. Gérard. Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes. Bulletin de la S.M.F. 116 (1988), Mémoire No. 31. Zbl0654.35081
- [8] L. Guillopé, M. Zworski. Upper bounds on the number of resonances for non-compact Riemann surfaces. Preprint, 1993. Zbl0841.58063
- [9] L. Guillopé, M. Zworski. Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity. Preprint, 1993. Zbl0859.58028
- [10] M. Ikawa. On the poles of the scattering matrix for two strictly convex obstacles. J. Math. Kyoto Univ. 23 (1983), 127-194. Zbl0561.35060MR84e:35118
- [11] M. Ikawa. On the existence of poles of the scattering matrix for several convex bodies. Proc. Japan Acad. 64 (1988), 91-93. Zbl0704.35113MR90i:35211
- [12] P. Lax, R. S. Phillips. The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces. J. Funct. Anal. 46 (1982), 280-350. Zbl0497.30036MR83j:10057
- [13] P. Lax, R. S. Phillips. Translation representation for automorphic solutions of the non-Euclidean wave equation I, II, III. Comm. Pure. Appl. Math. 37 (1984), 303-328, 37 (1984), 779-813, and 38 (1985), 179-208. Zbl0549.10019
- [14] P. Lax, R. S. Phillips. Translation representation for automorphic solutions of the non-Euclidean wave equation IV. Preprint, Stanford University, 1990. Zbl0796.35093
- [15] N. Mandouvalos. Scattering operator, Eisenstein series, inner product formula, and «Maass-Selberg» relations for Kleinian groups. Mem. Amer. Math. Soc. 400 (1989). Zbl0673.10023
- [16] A. Manning. Axiom A difeomorphisms have rational zeta functions. Bull. London Math. Soc. 3 (1971), 215-220. Zbl0219.58007MR44 #5982
- [17] R. Mazzeo, R. Melrose. Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75 (1987), 260-310. Zbl0636.58034MR89c:58133
- [18] S. J. Patterson. The Laplacian operator on a Riemann surface I, II, III. Compositio Math. 31 (1975), 83-107, 32 (1976) 71-112, and 33 (1976), 227-259. Zbl0342.30011
- [19] S. J. Patterson. The Selberg zeta-function of a Kleinian group. In Number Theory, Trace Formulas, and Discrete Groups : Symposium in honor of Atle Selberg, Oslo, Norway, July 14-21, 1987, New York, Academic Press, 1989, pp. 409-442. Zbl0668.10036
- [20] S. J. Patterson. On Ruelle's zeta-function. In Festschrift in honor of I.I. Piatetski-Shapiro on the occasion of his sixtieth birthday, ed. S. Gelbart, R. Howe, P. Sarnak. Jerusalem : Weizmann Science Press, 1990. Zbl0721.58041MR93d:58126
- [21] S. J. Patterson, P. A. Perry. The divisor of the Selberg Zeta function for Kleinian groups, in preparation. Zbl1012.11083
- [22] P. A. Perry. The Laplace operator on a hyperbolic manifold, II. Eisenstein series and the scattering matrix. J. reine angew. Math. 398 (1989), 67-91. Zbl0677.58044MR90g:58138
- [23] P. A. Perry. The Selberg zeta function and a local trace formula for Kleinian groups. J. reine angew. Math. 410 (1990), 116-152. Zbl0697.10027MR92e:11057
- [24] P. A. Perry. The Selberg zeta function and scattering poles for Kleinian groups. Bull. Amer. Math. Soc. 24 (1991), 327-333. Zbl0723.11028MR92d:58213
- [25] D. Ruelle. Zeta functions for expanding maps and Anosov flows, Inventiones Math. 34, (1976), 231-242. Zbl0329.58014MR54 #8732
- [26] A. Selberg. Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. 20 (1956), 47-87. Zbl0072.08201MR19,531g
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.