Divisor of the Selberg zeta function for kleinian groups

Peter A. Perry

Journées équations aux dérivées partielles (1994)

  • Volume: 1994, page 1-9
  • ISSN: 0752-0360

How to cite

top

Perry, Peter A.. "Divisor of the Selberg zeta function for kleinian groups." Journées équations aux dérivées partielles 1994 (1994): 1-9. <http://eudml.org/doc/93293>.

@article{Perry1994,
author = {Perry, Peter A.},
journal = {Journées équations aux dérivées partielles},
keywords = {discrete group of isometries; closed geodesics; length spectrum; Selberg zeta-function; Laplace operator; Euler characteristic; Selberg trace formula; distribution of scattering poles},
language = {eng},
pages = {1-9},
publisher = {Ecole polytechnique},
title = {Divisor of the Selberg zeta function for kleinian groups},
url = {http://eudml.org/doc/93293},
volume = {1994},
year = {1994},
}

TY - JOUR
AU - Perry, Peter A.
TI - Divisor of the Selberg zeta function for kleinian groups
JO - Journées équations aux dérivées partielles
PY - 1994
PB - Ecole polytechnique
VL - 1994
SP - 1
EP - 9
LA - eng
KW - discrete group of isometries; closed geodesics; length spectrum; Selberg zeta-function; Laplace operator; Euler characteristic; Selberg trace formula; distribution of scattering poles
UR - http://eudml.org/doc/93293
ER -

References

top
  1. [1] S. Agmon. On the spectral theory of the Laplacian on non-compact hyperbolic manifolds. Journées « Équations aux dérivées partielles » (Saint Jean de Monts, 1987), Exposée No. XVII, École Polytechnique, Palaiseau, 1987. Zbl0636.58037MR89c:58128
  2. [2] S. Agmon. On the representation theorem for solutions of the Helmholtz equation in hyperbolic space. Preprint, Forschungsinstitut für Mathematik, ETH-Zürich, 1990. Zbl0704.35018
  3. [3] Boas, R. P.Entire Functions. New York : Academic Press, 1954. Zbl0058.30201
  4. [4] R. Bowen. Symbolic dynamics for hyperbolic flows, Amer. Math. J. 95 (1973), 429-460. Zbl0282.58009MR49 #4041
  5. [5] D. Fried. The zeta functions of Ruelle and Selberg, I, Ann. scient. Éc. Norm. Sup. 19 (1986), 491-517. Zbl0609.58033MR88k:58134
  6. [6] R. Froese, P. Hislop, P. Perry. The Laplace operator on hyperbolic three-manifolds with cusps of non-maximal rank. Inventiones Math. 106 (1991), 295-333. Zbl0763.58028MR93b:11065
  7. [7] C. Gérard. Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes. Bulletin de la S.M.F. 116 (1988), Mémoire No. 31. Zbl0654.35081
  8. [8] L. Guillopé, M. Zworski. Upper bounds on the number of resonances for non-compact Riemann surfaces. Preprint, 1993. Zbl0841.58063
  9. [9] L. Guillopé, M. Zworski. Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity. Preprint, 1993. Zbl0859.58028
  10. [10] M. Ikawa. On the poles of the scattering matrix for two strictly convex obstacles. J. Math. Kyoto Univ. 23 (1983), 127-194. Zbl0561.35060MR84e:35118
  11. [11] M. Ikawa. On the existence of poles of the scattering matrix for several convex bodies. Proc. Japan Acad. 64 (1988), 91-93. Zbl0704.35113MR90i:35211
  12. [12] P. Lax, R. S. Phillips. The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces. J. Funct. Anal. 46 (1982), 280-350. Zbl0497.30036MR83j:10057
  13. [13] P. Lax, R. S. Phillips. Translation representation for automorphic solutions of the non-Euclidean wave equation I, II, III. Comm. Pure. Appl. Math. 37 (1984), 303-328, 37 (1984), 779-813, and 38 (1985), 179-208. Zbl0549.10019
  14. [14] P. Lax, R. S. Phillips. Translation representation for automorphic solutions of the non-Euclidean wave equation IV. Preprint, Stanford University, 1990. Zbl0796.35093
  15. [15] N. Mandouvalos. Scattering operator, Eisenstein series, inner product formula, and «Maass-Selberg» relations for Kleinian groups. Mem. Amer. Math. Soc. 400 (1989). Zbl0673.10023
  16. [16] A. Manning. Axiom A difeomorphisms have rational zeta functions. Bull. London Math. Soc. 3 (1971), 215-220. Zbl0219.58007MR44 #5982
  17. [17] R. Mazzeo, R. Melrose. Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75 (1987), 260-310. Zbl0636.58034MR89c:58133
  18. [18] S. J. Patterson. The Laplacian operator on a Riemann surface I, II, III. Compositio Math. 31 (1975), 83-107, 32 (1976) 71-112, and 33 (1976), 227-259. Zbl0342.30011
  19. [19] S. J. Patterson. The Selberg zeta-function of a Kleinian group. In Number Theory, Trace Formulas, and Discrete Groups : Symposium in honor of Atle Selberg, Oslo, Norway, July 14-21, 1987, New York, Academic Press, 1989, pp. 409-442. Zbl0668.10036
  20. [20] S. J. Patterson. On Ruelle's zeta-function. In Festschrift in honor of I.I. Piatetski-Shapiro on the occasion of his sixtieth birthday, ed. S. Gelbart, R. Howe, P. Sarnak. Jerusalem : Weizmann Science Press, 1990. Zbl0721.58041MR93d:58126
  21. [21] S. J. Patterson, P. A. Perry. The divisor of the Selberg Zeta function for Kleinian groups, in preparation. Zbl1012.11083
  22. [22] P. A. Perry. The Laplace operator on a hyperbolic manifold, II. Eisenstein series and the scattering matrix. J. reine angew. Math. 398 (1989), 67-91. Zbl0677.58044MR90g:58138
  23. [23] P. A. Perry. The Selberg zeta function and a local trace formula for Kleinian groups. J. reine angew. Math. 410 (1990), 116-152. Zbl0697.10027MR92e:11057
  24. [24] P. A. Perry. The Selberg zeta function and scattering poles for Kleinian groups. Bull. Amer. Math. Soc. 24 (1991), 327-333. Zbl0723.11028MR92d:58213
  25. [25] D. Ruelle. Zeta functions for expanding maps and Anosov flows, Inventiones Math. 34, (1976), 231-242. Zbl0329.58014MR54 #8732
  26. [26] A. Selberg. Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. 20 (1956), 47-87. Zbl0072.08201MR19,531g

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.