Heat kernel bounds for higher order elliptic operators

E. Brian Davies

Journées équations aux dérivées partielles (1995)

  • Volume: 1995, page 1-11
  • ISSN: 0752-0360

How to cite


Davies, E. Brian. "Heat kernel bounds for higher order elliptic operators." Journées équations aux dérivées partielles 1995 (1995): 1-11. <http://eudml.org/doc/93310>.

author = {Davies, E. Brian},
journal = {Journées équations aux dérivées partielles},
keywords = {heat kernel bounds; second order uniformly elliptic operators; Schrödinger operators},
language = {eng},
pages = {1-11},
publisher = {Ecole polytechnique},
title = {Heat kernel bounds for higher order elliptic operators},
url = {http://eudml.org/doc/93310},
volume = {1995},
year = {1995},

AU - Davies, E. Brian
TI - Heat kernel bounds for higher order elliptic operators
JO - Journées équations aux dérivées partielles
PY - 1995
PB - Ecole polytechnique
VL - 1995
SP - 1
EP - 11
LA - eng
KW - heat kernel bounds; second order uniformly elliptic operators; Schrödinger operators
UR - http://eudml.org/doc/93310
ER -


  1. Are Arendt W : Gaussian estimates and interpolation of the spectrum in Lp. Preprint 1993. 
  2. Aro Aronson D G : Non-negative solutions of linear parabolic equations. Ann. Sci. Norm. Sup. Pisa (3) 22 (1968) 607-694. Zbl0182.13802MR55 #8553
  3. AMT Auscher P, McIntosh A, Tchamitchian P : Noyau de la chaleur d'operateurs elliptiques complexes. Math. Research Lett. 1 (1994) 35-45. Zbl0827.35033MR94k:35081
  4. Au Auscher P : Private communication. 
  5. BD Barbatis G, Davies E B : Sharp bounds on heat kernels of higher order uniformly elliptic operators. Preprint 1995. Zbl0869.35048
  6. BR Bauer L, Reiss E L : Block five diagonal matrices and the fast numerical solution of the biharmonic equation. Math. of Comput. 26 (1972) 311-326. Zbl0257.65034MR47 #1307
  7. BS Birman M S, Solomjak M Z : On estimates of singular numbers of integral operators III. Operators on unbounded domains. Vestnik Leningrad State Univ. Math. 2 (1975) 9-27. 
  8. C Coffman C V : On the structure of solutions to Δ2u = λu which satisfy the clamped plate conditions on a right angle. SIAM J. Math. Anal. 13 (1982) 746-757. Zbl0498.73010MR84a:35015
  9. CD Coffman C V, Duffin R J : On the fundamental eigenvalues of a clamped punctured disk. Adv. Appl. Math. 13 (1992) 142-151. Zbl0762.35073MR93c:35113
  10. D1 Davies, E B : Explicit constants for Gaussian upper bounds on heat kernels. Amer J. Math. 109 (1987) 319-334. Zbl0659.35009MR88g:58174
  11. D2 Davies E B : Heat Kernels and Spectral Theory. Cambridge University Press, 1989. Zbl0699.35006MR90e:35123
  12. D3 Davies E B : The functional calculus. Preprint, 1993. J. London Math. Soc. to appear. Zbl0858.47012
  13. D4 Davies E B : Lp spectral independence and L1 analyticity. J. London Math. Soc. to appear. Zbl0913.47032
  14. D5 Davies E B : Uniformly elliptic operators with measurable coefficients. J Functional Anal. to appear. Zbl0839.35034
  15. D6 Davies E B : Long time asymptotics of fourth order parabolic equations. Preprint 1994. Zbl0851.35018
  16. DM Davies E B, Mandouvalos N : heat kernel bounds on hyperbolic space and Kleinian groups. Proc. London Math. Soc. (3) 57 (1988) 182-208. Zbl0643.30035MR89i:58137
  17. DST Davies E B, Simon B, Taylor M : Lp spectral theory of Kleinian groups. J. Functional Anal. 78 (1988) 116-136. Zbl0644.58022MR89m:58205
  18. ER Elst A F M ter, Robinson D W : Subcoercive and subelliptic operators on Lie groups : Variable coefficients. Publ. RIMS 29 (1993) 745-801. Zbl0816.43002MR95e:22023
  19. HS Helffer B and Sjöstrand J : Equation de Schrödinger avec champ magnétique et équation de Harper. pp. 118-197 in «Schrödinger Operators», eds. H Holden and A Jensen, Lecture Notes in Physics, Vol. 345, Springer-Verlag, 1989. Zbl0699.35189
  20. HV Hempel R and Voigt J : The spectrum of a Schrödinger operator in Lp(RN) is p-independent. Commun. Math. Phys. 104 (1986) 243-250. Zbl0593.35033MR87h:35247
  21. Hö Hörmander L : On the singularities of solutions of partial differential equations, in Proc. Inter. Conf. Tokyo 1969. Univ. of Tokyo Press, Tokyo, 1970, pp 31-40. Zbl0191.10901
  22. JN1 Jensen A, Nakamura S : Lp-mapping properties of functions of Schrödinger operators and their applications to scattering theory. J. Math. Soc. Japan 47 (1995) 253-273. Zbl0841.35096MR95m:47087
  23. JN2 Jensen A, Nakamura S : Mapping properties of functions of Schrödinger operators between Lp spaces and Besov spaces. pp 187-209 in «Spectral and Scattering Theory and Applications», Advanced Studies in Pure Math. vol. 23, Kinokuniya Publ., Tokyo, 1994. Zbl0815.47012MR96a:47084
  24. K Kordyukov Yu A : Lp-theory of elliptic differential operators on manifolds of bounded geometry. Acta Applic. Math. 23 (1991) 223-260. Zbl0743.58030
  25. KKM Kozlov V A, Kondrat'ev V A, Maz'ya V G : On sign variation and the absence of «strong» zeros of solutions of elliptic equations. Math. USSR Izvestiya 34 (1990) 337-353. Zbl0701.35062MR90i:35021
  26. MNP Maz'ya V G, Nazarov S A, Plamenevskii B A : Absence of the De-Giorgi-type theorems for strongly elliptic operators with complex coefficients. J. Math. Soviet 28 (1985) 726-739. Zbl0562.35030
  27. O E.M. Ouhabaz : Gaussian estimates and holomorphy of semigroups. Proc. Amer. Math. Soc. 123 (1995) 1465-1474. Zbl0829.47032MR95f:47068
  28. P Pang M M H : Resolvent estimates for Schrödinger operators in Lp(RN) and the theory of exponentially bounded C-semigroups. Semigroups Forum 41 (1990) 97-114. Zbl0739.47017MR91m:35170
  29. PV1 Pipher J, Verchota G : A maximum principle for biharmonic functions in Lipschitz and C1 domains. Comment. Math. Helv. 68 (1993) 385-414. Zbl0794.31005MR94j:35030
  30. PV2 Pipher J, Verchota G : Dilation invariant estimates and the boundary Gårding inequality for higher order elliptic operators. Ann. Math. to appear. Zbl0878.35035
  31. R Robinson D W : Elliptic Operators and Lie Groups. Oxford University Press, 1991. Zbl0747.47030
  32. Se Semenov Yu A : Stability of Lp spectrum, in preparation, 1995. 
  33. Si1 Simon B : Trace ideals and their applications. London Math. Soc. Lecture Note Series, Vol. 35. Cambridge University Press, 1979. Zbl0423.47001MR80k:47048
  34. Si2 Simon B : Schrödinger semigroups. Bull. Amer. Math. Soc. 7 (1982) 447-526. Zbl0524.35002MR86b:81001a
  35. St Sturm K-Th : On the Lp-spectrum of Laplace-Beltrami operators. Preprint 1992. 
  36. SV Schreieck G, Voigt J : Stability of the Lp spectrum of Schrödinger operators with form small negative part of the potential. In «Functional Analysis», Lecture Notes in Pure and Applied Math. ; Bierstedt, Pietsch, Ruess, Voigt eds. ; Dekker, 1994. Zbl0817.35065
  37. VSC Varopoulos N Th, Saloff-Coste L, Coulhon T : Analysis and geometry on groups. Cambridge Tracts in Math., Vol. 100. Cambridge University Press, 1992. Zbl0813.22003MR95f:43008
  38. VG Vasil'ev D G, Gol'denveizer A L : Distribution of free vibration frequencies in two- and three-dimensional elastic bodies. p 227-242 of «Mechanics of Deformable Solids», ed. N Kh Arutiunian, I F Obraztsov, V Z Parton. Hemisphere Publ. Co., New York, 1991. 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.