Electrical impedance tomography in nonlinear media
Journées équations aux dérivées partielles (1996)
- Volume: 1996, page 1-11
- ISSN: 0752-0360
Access Full Article
topHow to cite
topSun, Ziqi, and Uhlmann, Gunther. "Electrical impedance tomography in nonlinear media." Journées équations aux dérivées partielles 1996 (1996): 1-11. <http://eudml.org/doc/93321>.
@article{Sun1996,
author = {Sun, Ziqi, Uhlmann, Gunther},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-11},
publisher = {Ecole polytechnique},
title = {Electrical impedance tomography in nonlinear media},
url = {http://eudml.org/doc/93321},
volume = {1996},
year = {1996},
}
TY - JOUR
AU - Sun, Ziqi
AU - Uhlmann, Gunther
TI - Electrical impedance tomography in nonlinear media
JO - Journées équations aux dérivées partielles
PY - 1996
PB - Ecole polytechnique
VL - 1996
SP - 1
EP - 11
LA - eng
UR - http://eudml.org/doc/93321
ER -
References
top- [A] Ahlfors, L., Quasiconformal Mappings, Van Nostrand, 1966. Zbl0138.06002MR34 #336
- [Al] Alessandrini, G., Singular solutions of elliptic equations and the determination of conductivity by boundary measurements, J. Diff. Equations, 84, (1990), 252-272. Zbl0778.35109MR91e:35210
- [G-T] Gilbarg, D. and Trudinger, N., Elliptic partial differential equations of second order, Springer-Verlag, 1982.
- [K-V] Kohn, R. and Vogelius, M., Determining conductivity by boundary measurements, Comm. Pure Appl. Math., 37, (1984), 643-667. Zbl0595.35092MR85f:80008
- [L] Lax, P., A Stability theorem for solutions of abstract differential equations, and its application to the study of local behavior of solutions of elliptic equations, Comm. Pure Appl. Math., 9 (1956), 747-766. Zbl0072.33004MR19,281a
- [L-U] Lee, J. and Uhlmann, G., Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math., 42, (1989), 1097-1112. Zbl0702.35036MR91a:35166
- [N] Nachman, A., Global uniqueness for a two-dimensional inverse boundary value problem, to appear Annals of Math. Zbl0857.35135
- [No] Novikov, R.G., ∂-method with nonzero background potential. Application to inverse scattering for the two-dimensional acoustic equation, preprint. Zbl0855.35130
- [S] Sylvester, J., An anisotropic inverse boundary value problem, Comm. Pure Appl. Math., 43, (1990), 201-232. Zbl0709.35102MR90m:35202
- [S-U, I] Sylvester, J. and Uhlmann, G., A global uniqueness theorem for an inverse boundary value problem, Annals of Math., 125, (1987), 153-169. Zbl0625.35078MR88b:35205
- [S-U, II] Sylvester, J. and Uhlmann, G., A uniqueness theorem for an inverse boundary value problem in electrical prospection, Comm. Pure Appl. Math., 39, (1986), 91-112. Zbl0611.35088MR87j:35377
- [S-U, III] Sylvester, J. and Uhlmann, G., Inverse problems in anisotropic media, Contemp. Math., 122, (1991), 105-117. Zbl0748.35057MR92k:35289
- [Su] Sun, Z., On a quasilinear inverse boundary value problem, to appear in Math. Z. Zbl0843.35137
- [Su-U, I] Sun, Z. and Uhlmann, G., Inverse problems in quasilinear anisotro pic media, preprint. Zbl0886.35176
- [Su-U, II] Sun, Z. and Uhlmann, G., Generic uniqueness for an inverse boundary value problem, Duke Math. J., 62, (1991), 131-155. Zbl0728.35132MR92b:35172
- [Su-U, III] Sun, Z. and Uhlmann, G., Recovery of singularities for formally determined inverse problems, Comm. Math. Phys. 153, (1993), 431-445. Zbl0795.35142MR94f:35146
- [U] Uhlmann, G., Inverse boundary value problems, Astérique, 207, (1992), 153-211. Zbl0787.35123MR94e:35146
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.