Quasi-minimal surfaces of codimension 1 : a piece of demonstration

Guy David; Stephen Semmes

Journées équations aux dérivées partielles (1996)

  • Volume: 1996, page 1-18
  • ISSN: 0752-0360

How to cite


David, Guy, and Semmes, Stephen. "Surfaces quasiminimales de codimension 1 : un morceau de démonstration." Journées équations aux dérivées partielles 1996 (1996): 1-18. <http://eudml.org/doc/93334>.

author = {David, Guy, Semmes, Stephen},
journal = {Journées équations aux dérivées partielles},
language = {fre},
pages = {1-18},
publisher = {Ecole polytechnique},
title = {Surfaces quasiminimales de codimension 1 : un morceau de démonstration},
url = {http://eudml.org/doc/93334},
volume = {1996},
year = {1996},

AU - David, Guy
AU - Semmes, Stephen
TI - Surfaces quasiminimales de codimension 1 : un morceau de démonstration
JO - Journées équations aux dérivées partielles
PY - 1996
PB - Ecole polytechnique
VL - 1996
SP - 1
EP - 18
LA - fre
UR - http://eudml.org/doc/93334
ER -


  1. [Bo] B. BOJARSKI : Remarks on Sobolev imbedding inequalities. Proceedings, Complex analysis in Joensuu 1987, 52-68, L.N. in Math. 1351 (1988), Springer-Verlag. Zbl0662.46037
  2. [DJ] G. DAVID and D. JERISON : Lipschitz approximations to hypersurfaces, harmonic measure, and singular integrals. Indiana Univ. Math. J. 39 (1990), 831-845. Zbl0758.42008MR92b:42021
  3. [DS1] G. DAVID and S. SEMMES : Quantitative rectifiability and Lipschitz mappings. Trans. Amer. Math. Soc. 337 (1993), 855-889. Zbl0792.49029MR93h:42015
  4. [DS2] G. DAVID and S. SEMMES : Analysis of and on uniformly rectifiable sets. A.M.S. Series of Mathematical Surveys and Monographs, 38 (1993). Zbl0832.42008MR94i:28003
  5. [DS3] G. DAVID and S. SEMMES : Quasiminimal surfaces of codimension 1 and John domains. Preprint IHES, 1996. Zbl0948.49501
  6. [DS4] G. DAVID et S. SEMMES : Surfaces quasiminimales de codimension 1 et domaines de John. Exposé au Sém. E.D.P. de l'Ecole Polytechnique, Février 1996. Zbl0948.49501MR99h:49054
  7. [HK] P. HAJLASZ and P. KOSKELA : Isoperimetric inequalities and embedding theorems in irregular domains. J. London Math. Soc., à paraître. Zbl0922.46034
  8. [Ma] P. MATTILA : Geometry of sets and measures in Euclidean space. Cambridge Univ. Press 1995. Zbl0819.28004MR96h:28006
  9. [Se] S. SEMMES : A criterion for the boundedness of singular integrals on hypersurfaces. Trans. A.M.S. 311 (1989), 501-513. Zbl0675.42015MR89k:42017
  10. [St] E. M. STEIN : Singular integrals and differentiability properties of functions. Princeton Univ. Press, 1970. Zbl0207.13501MR44 #7280

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.