Local existence theory for the generalized Schrödinger equation
Journées équations aux dérivées partielles (1997)
- page 1-11
- ISSN: 0752-0360
Access Full Article
topHow to cite
topPonce, Gustavo. "Local existence theory for the generalized Schrödinger equation." Journées équations aux dérivées partielles (1997): 1-11. <http://eudml.org/doc/93338>.
@article{Ponce1997,
author = {Ponce, Gustavo},
journal = {Journées équations aux dérivées partielles},
keywords = {local well-posedness; initial value problem; nonlinear Schrödinger equations},
language = {eng},
pages = {1-11},
publisher = {Ecole polytechnique},
title = {Local existence theory for the generalized Schrödinger equation},
url = {http://eudml.org/doc/93338},
year = {1997},
}
TY - JOUR
AU - Ponce, Gustavo
TI - Local existence theory for the generalized Schrödinger equation
JO - Journées équations aux dérivées partielles
PY - 1997
PB - Ecole polytechnique
SP - 1
EP - 11
LA - eng
KW - local well-posedness; initial value problem; nonlinear Schrödinger equations
UR - http://eudml.org/doc/93338
ER -
References
top- [AbHa] Ablowitz, M. J., and Haberman, R., Nonlinear evolution equations in two and three dimensions, Phys. Rev. Lett. 35 (1975), 1185-1188. MR55 #896
- [CaVa] Calderón, A. P., and Vaillancourt, R., A class of bounded pseudodifferential operators, Proc. Nat. Acad. Sci. USA. 69 (1972), 1185-1187. Zbl0244.35074MR45 #7532
- [Cz] Cazenave, T., An introduction to nonlinear Schrödinger equations, Textos de Métodos Matemáticos 22, Universidade Federal do Rio de Janeiro.
- [Ch1] Chihara, H., Local existence for semilinear Schrödinger equations, Math. Japonica 42 (1995), 35-52. Zbl0834.35118MR96d:35128
- [Ch2] Chihara, H., The initial value problem for the elliptic-hyperbolic Davey-Stewartson equation, preprint. Zbl0947.35036
- [CoSa] Constantin, P., and Saut, J. C., Local smoothing properties of dispersive equations, J. Amer. Math. Soc. 1 (1989), 413-446. Zbl0667.35061MR89d:35150
- [CrKaSt] Craig, W., Kappeler T., and Strauss, W., Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pure Appl. Math. 48 (1995), 769-860. Zbl0856.35106MR96m:35057
- [DaSe] Davey, A., and Stewartson, K., On three dimensional packets of surface waves, Proc. R. Soc. A 338 (1974), 101-110. Zbl0282.76008MR50 #1620
- [Do1] Doi, S., On the Cauchy problem for Schrödinger type equations and the regularity of the solutions, J. Math. Kyoto Univ. 34 (1994), 319-328. Zbl0807.35026MR95g:35190
- [Do2] Doi, S., Remarks on the Cauchy problem for Schrödinger type equations, Comm. P.D.E. 21 (1996), 163-178. Zbl0853.35025MR96m:35058
- [GhSa] Ghidaglia, J. M., and Saut, J. C., On the initial value problem for the Davey-Stewartson systems, Nonlinearity 3 (1990), 475-506. Zbl0727.35111MR91h:35299
- [Hy1] Hayashi, N., Global existence of small analytic solutions to nonlinear Schrödinger equations, Duke Math. J 62 (1991), 575-592. MR92f:35127
- [Hy2] Hayashi, N., Local existence in time of solutions to the elliptic-hyperbolic Davey-Stewartson system without smallness condition on the data, preprint. Zbl0907.35120
- [HyOz] Hayashi, N., and Ozawa, T., Remarks on nonlinear Schrödinger equations in one space dimension, Diff. Integral Eqs 2 (1994), 453-461. Zbl0803.35137MR94j:35165
- [HySa] Hayashi, N., and Saut, J.-C., Global existence of small solutions to the Davey-Stewartson and the Ishimori systems, Diff. Integral Eqs 8 (1995), 1657-1675. Zbl0827.35120MR96k:35167
- [Is] Ishimori, Y., Multi vortex solutions of a two dimensional nonlinear wave equation, Progr. Theor. Phys 72 (1984), 33-37. Zbl1074.35573MR86c:35139
- [Kt] Kato, T., Quasilinear evolution equation, with applications to partial differential equations, Lecture Notes in Math. 448, 27-50, Springer-Verlag 1975. Zbl0315.35077MR53 #11252
- [KePoVe1] Kenig, C. E., Ponce, G., and Vega, L., Small solutions to nonlinear Schrödinger equations, Annales de l'I.H.P. 10 (1993), 255-288. Zbl0786.35121MR94h:35238
- [KePoVe2] Kenig, C. E., Ponce, G., and Vega, L., On the smoothing of some dispersive hyperbolic systems, preprint. Zbl0887.35027
- [KePoVe3] Kenig, C. E., Ponce, G., and Vega, L., On the Cauchy problem for linear Schrödinger systems with variable coefficient lower order terms, preprint. Zbl0908.35026
- [LiPo] Linares, F., and Ponce, G., On the Davey-Stewartson systems, Annales de l'I.H.P. Analyse non linéaire 10 (1993), 523-548. Zbl0807.35136MR94m:35285
- [Mi] Mizohata, S., On the Cauchy problem, Notes and Reports in Math. in Science and Engineering, Science Press & Academic Press 3 (1985). Zbl0616.35002MR89a:35007
- [SiTa] Simon, J., and Taflin, E., Wave operators and analytic solutions for systems of nonlinear Klein-Gordon equations and of non-linear Schrödinger equations, Comm. Math. Phys. 99 (1985), 541-562. Zbl0615.47034MR86j:35147
- [Sj] Sjölin, P., Regularity of solutions to the Schrödinger equations, Duke Math. J. 55 (1987), 699-715. Zbl0631.42010
- [So] Souyer, A., The Cauchy problem for the Ishimori equations, J. Funct. Anal. 105 (1992), 233-255. Zbl0763.35077MR93h:82034
- [Tk] Takeuchi, J., Le problème de Cauchy pour certaines équations aux dérivées partielles du type de Schrödinger, VIII ; symétrisations indépendendantes du temps, C. R. Acad. Sci. Paris t315, Série 1 (1992), 1055-1058. Zbl0768.35066MR94a:35031
- [Ve] Vega, L., The Schrödinger equation : pointwise convergence to the initial date, Proc. Amer. Math. Soc. 102 (1988), 874-878. Zbl0654.42014MR89d:35046
- [ZaSc] Zakharov, V. E., and Schulman, E. I., Degenerated dispersion laws, motion invariant and kinetic equations, Physica 1D (1980), 185-250. MR81j:35077
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.