Distribution of resonances for convex co-compact hyperbolic surfaces

Maciej Zworski

Journées équations aux dérivées partielles (1997)

  • page 1-9
  • ISSN: 0752-0360

How to cite

top

Zworski, Maciej. "Distribution of resonances for convex co-compact hyperbolic surfaces." Journées équations aux dérivées partielles (1997): 1-9. <http://eudml.org/doc/93342>.

@article{Zworski1997,
author = {Zworski, Maciej},
journal = {Journées équations aux dérivées partielles},
keywords = {density of resonances; convex co-compact hyperbolic surfaces; Weyl estimate; dimension; limit set; Kleinian group; distribution of resonances},
language = {eng},
pages = {1-9},
publisher = {Ecole polytechnique},
title = {Distribution of resonances for convex co-compact hyperbolic surfaces},
url = {http://eudml.org/doc/93342},
year = {1997},
}

TY - JOUR
AU - Zworski, Maciej
TI - Distribution of resonances for convex co-compact hyperbolic surfaces
JO - Journées équations aux dérivées partielles
PY - 1997
PB - Ecole polytechnique
SP - 1
EP - 9
LA - eng
KW - density of resonances; convex co-compact hyperbolic surfaces; Weyl estimate; dimension; limit set; Kleinian group; distribution of resonances
UR - http://eudml.org/doc/93342
ER -

References

top
  1. [1] Ch. Gérard and J. Sjöstrand, Semiclassical resonances generated by a closed trajectory of hyperbolic type. Comm. Math. Phys. 108 (1987), 391-421. Zbl0637.35027MR88k:58151
  2. [2] L. Guillopé, Sur la distribution des longeurs des géodesiques fermées d'une surface compacte à bord totalement géodesique. Duke Math. J. 53 (1986), 827-848. Zbl0611.53042MR88e:11042
  3. [3] L. Guillopé, Fonctions Zêta de Selberg et surfaces de géométrie finie. Advanced Studies in Pure Mathematics 21 (1992), 33-70. Zbl0794.58044MR94d:11032
  4. [4] L. Guillopé and M. Zworski, Upper bounds on the number of resonances for non-compact Riemann surfaces. J. Func. Anal. 129 (1995), 364-389. Zbl0841.58063MR96b:58116
  5. [5] L. Guillopé and M. Zworski, Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity. Asymp. Anal. 11 (1995), 1-22. Zbl0859.58028MR96h:58172
  6. [6] L. Guillopé and M. Zworski, Scattering asymptotics for Riemann surfaces. to appear in Ann. of Math. Zbl0898.58054
  7. [7] B. Helffer and J. Sjöstrand, Résonances en limite semi-classique. Mémoires de la S.M.F. 114(3) (1986). Zbl0631.35075
  8. [8] M. Ikawa. On the existence of poles of the scattering for several convex bodies. Proc. Japan Acad. 64 (1988), 91-93. Zbl0704.35113MR90i:35211
  9. [9] S. Lalley, Renewal theorems in symbolic dynamics with applications to geodesic flows, noneuclidean tesselations and their fractal limits. Acta Math. 163 (1989), 1-55. Zbl0701.58021MR91c:58112
  10. [10] R. Mazzeo and R.B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Func. Anal. 75 (1987), 260-310. Zbl0636.58034MR89c:58133
  11. [11] R. B. Melrose, Geometric Scattering Theory. Cambridge University Press, 1995. Zbl0849.58071MR96k:35129
  12. [12] S.J. Patterson, The limit set of a Fuchsian group. Acta Math. 136 (1976), 241-273. Zbl0336.30005MR56 #8841
  13. [13] S.J. Patterson, The Laplacian operator on a Riemann surface I, II, III. Compositio Math. 31 (1975), 83-107, 32 (1976), 71-112, and 33 (1976), 227-259. Zbl0342.30011
  14. [14] S.J. Patterson and P. Perry, Divisor of the Selberg Zeta function, I. Even dimensions. preprint, 1995. 
  15. [15] D. Ruelle, Chaotic evolution and strange attractors. Lezione Lincee, Cambridge University Press, 1989. Zbl0683.58001MR91d:58169
  16. [16] J. Sjöstrand, Singularité analytiques microlocales. Astérisque 95 (1982). Zbl0524.35007MR84m:58151
  17. [17] J. Sjöstrand, Geometric bounds on the density of resonances for semi-classical problems. Duke Math. J. 60 (1990), 1-57. Zbl0702.35188
  18. [18] J. Sjöstrand, Density of resonances for strictly convex analytic obstacles. Can. J. Math. 48(2) (1996), 437-446. Zbl0863.35072MR97j:35117
  19. [19] J. Sjöstrand, A trace formula for resonances and application to semi-classical Schrödinger operators, Séminaire EDP, École Polytechnique, Novembre, 1996. 
  20. [20] J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles. J. of Amer. Math. Soc. 4(4) (1991), 729-769. Zbl0752.35046MR92g:35166
  21. [21] J. Sjöstrand and M. Zworski, Lower bounds on the number of scattering poles. Comm. P. D. E. 18 (1993), 847-858. Zbl0784.35070MR94h:35198
  22. [22] J. Sjöstrand and M. Zworski, The complex scaling method for scattering by strictly convex obstacles. Ark. Math. 33 (1995), 135-172. Zbl0839.35095MR96f:35127
  23. [23] D. Sullivan, The density at infinity of a discrete group of hyperbolic motions. Publ. IHES 50 (1979), 172-202. Zbl0439.30034MR81b:58031
  24. [24] M. Zworski, Distribution of scattering poles for scattering on the real line. J. Funct. Anal., 73(2) (1987), 277-296. Zbl0662.34033MR88h:81223
  25. [25] M. Zworski, Counting scattering poles. in SPECTRAL AND SCATTERING THEORY. M. Ikawa, ed. Marcel Dekker, 1994. Zbl0823.35139MR95i:35210
  26. [26] M. Zworski, Poisson formulæ for resonances, Séminaire EDP, École Polytechnique, Avril, 1997. Zbl1255.35084MR98j:35036
  27. [27] M. Zworski, Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces, preprint, 1997. Zbl1016.58014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.