Page 1 Next

Displaying 1 – 20 of 32

Showing per page

A family of M-surfaces whose automorphism groups act transitively on the mirrors.

Adnan Melekoglu (2000)

Revista Matemática Complutense

Let X be a compact Riemmann surface of genus g > 1. A symmetry T of X is an anticonformal involution. The fixed point set of T is a disjoint union of simple closed curves, each of which is called a mirror of T. If T fixes g +1 mirrors then it is called an M-symmetry and X is called an M-surface. If X admits an automorphism of order g + 1 which cyclically permutes the mirrors of T then we shall call X an M-surface with the M-property. In this paper we investigate those M-surfaces with the...

Big groups of automorphisms of some Klein surfaces.

Beata Mockiewicz (2002)

RACSAM

Sea Xp una superficie de Klein compacta con borde de gen algebraico p ≥ 2. Se sabe que si G es un grupo de automorfismos de Xp entonces |G| ≤ 12(p- 1). Se dice que G es un grupo grande de gen p si |G| > 4(p -1). En el presente artículo se halla una familia de enteros p para los que el único grupo grande de gen p son los grupos diédricos. Esto significa que, en términos del gen real introducido por C. L. May, para tales valores de p no existen grupos grandes de gen real p.

Dynamics of dianalytic transformations of Klein surfaces

Ilie Barza, Dorin Ghisa (2004)

Mathematica Bohemica

This paper is an introduction to dynamics of dianalytic self-maps of nonorientable Klein surfaces. The main theorem asserts that dianalytic dynamics on Klein surfaces can be canonically reduced to dynamics of some classes of analytic self-maps on their orientable double covers. A complete list of those maps is given in the case where the respective Klein surfaces are the real projective plane, the pointed real projective plane and the Klein bottle.

Lifting di-analytic involutions of compact Klein surfaces to extended-Schottky uniformizations

Rubén A. Hidalgo (2011)

Fundamenta Mathematicae

Let S be a compact Klein surface together with a di-analytic involution κ: S → S. The lowest uniformizations of S are those whose deck group is an extended-Schottky group, that is, an extended Kleinian group whose orientation preserving half is a Schottky group. If S is a bordered compact Klein surface, then it is well known that κ can be lifted with respect to a suitable extended-Schottky uniformization of S. In this paper, we complete the above lifting property by proving that if S is a closed...

Maximal real Schottky groups.

Rubén A. Hidalgo (2004)

Revista Matemática Iberoamericana

Let S be a real closed Riemann surfaces together a reflection τ : S ---> S, that is, an anticonformal involution with fixed points. A well known fact due to C. L. May asserts that the group K(S, τ), consisting on all automorphisms ...

Morphisms of Klein surfaces.

F. J. Cirre (1997)

Revista Matemática de la Universidad Complutense de Madrid

We give an elementary proof of a theorem of Andreian Cazacu on the behavior of morphisms of Klein surfaces under composition.

On commutativity and ovals for a pair of symmetries of a Riemann surface

Ewa Kozłowska-Walania (2007)

Colloquium Mathematicae

We study the upper bounds for the total number of ovals of two symmetries of a Riemann surface of genus g, whose product has order n. We show that the natural bound coming from Bujalance, Costa, Singerman and Natanzon's original results is attained for arbitrary even n, and in case of n odd, there is a sharper bound, which is attained. We also prove that two (M-q)- and (M-q')-symmetries of a Riemann surface X of genus g commute for g ≥ q+q'+1 (by (M-q)-symmetry we understand a symmetry having g+1-q...

Currently displaying 1 – 20 of 32

Page 1 Next