Self-similar solutions and Besov spaces for semi-linear Schrödinger and wave equations
Journées équations aux dérivées partielles (1999)
- page 1-11
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topPlanchon, Fabrice. "Self-similar solutions and Besov spaces for semi-linear Schrödinger and wave equations." Journées équations aux dérivées partielles (1999): 1-11. <http://eudml.org/doc/93386>.
@article{Planchon1999,
abstract = {We prove that the initial value problem for the semi-linear Schrödinger and wave equations is well-posed in the Besov space $\dot\{B\}^\{\{\frac\{n\}\{2\}-\frac\{2\}\{p\},\infty \}\}_2(\mathbf \{R\}^n)$, when the nonlinearity is of type $u^\{p\}$, for $p\in \mathbf \{N\}$. This allows us to obtain self-similar solutions, as well as to recover previously known results for the solutions under weaker smallness assumptions on the data.},
author = {Planchon, Fabrice},
journal = {Journées équations aux dérivées partielles},
keywords = {initial value problem; well-posedness; Besov space; self-similar solutions},
language = {eng},
pages = {1-11},
publisher = {Université de Nantes},
title = {Self-similar solutions and Besov spaces for semi-linear Schrödinger and wave equations},
url = {http://eudml.org/doc/93386},
year = {1999},
}
TY - JOUR
AU - Planchon, Fabrice
TI - Self-similar solutions and Besov spaces for semi-linear Schrödinger and wave equations
JO - Journées équations aux dérivées partielles
PY - 1999
PB - Université de Nantes
SP - 1
EP - 11
AB - We prove that the initial value problem for the semi-linear Schrödinger and wave equations is well-posed in the Besov space $\dot{B}^{{\frac{n}{2}-\frac{2}{p},\infty }}_2(\mathbf {R}^n)$, when the nonlinearity is of type $u^{p}$, for $p\in \mathbf {N}$. This allows us to obtain self-similar solutions, as well as to recover previously known results for the solutions under weaker smallness assumptions on the data.
LA - eng
KW - initial value problem; well-posedness; Besov space; self-similar solutions
UR - http://eudml.org/doc/93386
ER -
References
top- [1] J. Bergh and J. Löfstrom. Interpolation Spaces, An Introduction. Springer-Verlag, 1976. Zbl0344.46071
- [2] J.-M. Bony. Calcul symbolique et propagation des singularités dans les équations aux dérivées partielles non linéaires. Ann. Sci. Ecole Norm. Sup., 14:209-246, 1981. Zbl0495.35024MR84h:35177
- [3] J. Bourgain. Refinements of Strichartz inequality and applications to 2-D NLS with critical nonlinearity. I.M.R.N., 5:253-283, 1998. Zbl0917.35126MR99f:35184
- [4] M. Cannone. Ondelettes, Paraproduits et Navier-Stokes. Diderot Editeurs, Paris, 1995. Zbl1049.35517MR2000e:35173
- [5] T. Cazenave and F. Weissler. The Cauchy problem for the critical nonlinear Schrödinger equation in Hs. Nonlinear Anal. T.M.A., 14:807-836, 1990. Zbl0706.35127MR91j:35252
- [6] T. Cazenave and F. Weissler. Asymptotically self-similar global solutions of the non linear Schrödinger and heat equations. Math. Zeit., 228:83-120, 1998. Zbl0916.35109MR99d:35149
- [7] T. Cazenave and F. Weissler. More self-similar solutions of the nonlinear Schrödinger equation. No D.E.A., 5:355-365, 1998. Zbl0990.35121MR99f:35185
- [8] J. Ginibre and Velo. The global Cauchy problem for the NLS equation revisited. Ann. IHP, An. non-linéaire, 2:309-327, 1985. Zbl0586.35042MR87b:35150
- [9] M. Keel and T. Tao. Enpoint Strichartz estimates. American Journal of Mathematics, 120(5):955-980, 1998. Zbl0922.35028MR2000d:35018
- [10] H. Lindbladt and C. D. Sogge. On existence and scattering with minimal regularity for semilinear wave equations. J. funct. Anal., 130:357-426, 1995. Zbl0846.35085MR96i:35087
- [11] R. O'Neil. Convolution operators and L(p,q) spaces. Duke Mathematical Journal, 30:129-142, 1963. Zbl0178.47701MR26 #4193
- [12] F. Oru. Rôle des oscillations dans quelques problèmes d'analyse non-linéaire. PhD thesis, ENS Cachan, 1998.
- [13] H. Pecher. Self-similar and asymptotically self-similar solutions of nonlinear wave equations. preprint. Zbl0960.35067
- [14] J. Peetre. New thoughts on Besov Spaces. Duke Univ. Math. Series. Duke University, Durham, 1976. Zbl0356.46038MR57 #1108
- [15] F. Planchon. On the Cauchy problem in Besov spaces for a non-linear Schrödinger equation. preprint. Zbl0961.35148
- [16] F. Planchon. Self-similar solutions and semi-linear wave equations in Besov spaces. preprint. Zbl0979.35106
- [17] F. Planchon. Asymptotic Behavior of Global Solutions to the Navier-Stokes Equations. Rev. Mat. Iberoamericana, 14(1), 1998. Zbl0910.35096MR99k:35144
- [18] F. Planchon. Solutions autosimilaires et espaces de données initiales pour une équation de Schrödinger non-linéaire. C. R. Acad. Sci. Paris, 328, 1999. Zbl0931.35038MR2000d:35028
- [19] F. Ribaud and A. Youssfi. Self-similar solutions of nonlinear wave equation. preprint. Zbl0933.35140
- [20] F. Ribaud and A. Youssfi. Regular and self-similar solutions of nonlinear Schrödinger equations. J. Math. Pures Appl., 9(10):1065-1079, 1998. Zbl0928.35159MR2000b:35240
- [21] F. Ribaud and A. Youssfi. Solutions globales et solutions auto-similaires de l'équation des ondes non linéaire. C. R. Acad. Sci. Paris, 328, 1999. Zbl0933.35140MR2001b:35219
- [22] R. Strichartz. Restriction of Fourier transform to quadratic surfaces and decay of solutions of the wave equations. Duke Mathematical Journal, 44:705-714, 1977. Zbl0372.35001MR58 #23577
- [23] T. Tao. Low regularity semi-linear wave equations. Comm. in Partial Diff. Equations, 24(3&4):599-629, 1999. Zbl0939.35123MR2000a:35175
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.