The global Cauchy problem for the non linear Schrödinger equation revisited

J. Ginibre; G. Velo

Annales de l'I.H.P. Analyse non linéaire (1985)

  • Volume: 2, Issue: 4, page 309-327
  • ISSN: 0294-1449

How to cite

top

Ginibre, J., and Velo, G.. "The global Cauchy problem for the non linear Schrödinger equation revisited." Annales de l'I.H.P. Analyse non linéaire 2.4 (1985): 309-327. <http://eudml.org/doc/78100>.

@article{Ginibre1985,
author = {Ginibre, J., Velo, G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Cauchy problem; nonlinear Schrödinger equation; weak global solutions; Galerkin method; method of contraction},
language = {eng},
number = {4},
pages = {309-327},
publisher = {Gauthier-Villars},
title = {The global Cauchy problem for the non linear Schrödinger equation revisited},
url = {http://eudml.org/doc/78100},
volume = {2},
year = {1985},
}

TY - JOUR
AU - Ginibre, J.
AU - Velo, G.
TI - The global Cauchy problem for the non linear Schrödinger equation revisited
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1985
PB - Gauthier-Villars
VL - 2
IS - 4
SP - 309
EP - 327
LA - eng
KW - Cauchy problem; nonlinear Schrödinger equation; weak global solutions; Galerkin method; method of contraction
UR - http://eudml.org/doc/78100
ER -

References

top
  1. [1] J.B. Baillon, T. Cazenave, M. Figuera, C. R. Acad. Sci. Paris, t. 284, 1977, p. 869-872. Zbl0349.35048
  2. [2] J. Bergh, J. Löfström, Interpolation Spaces, Springer, Berlin-Heidelberg-New York, 1976. Zbl0344.46071MR482275
  3. [3] T. Cazenave, Proc. Roy. Soc. Edinburgh, t. 84, 1979, p. 327-346. Zbl0428.35021MR559676
  4. [4] T. Cazenave, A. Haraux, Ann. Fac. Sc. Toulouse, t. 2, 1980, p. 21-25. Zbl0411.35051MR583902
  5. [5] I. Ekeland, R. Temam, Analyse convexe et problèmes variationnels, Dunod, Paris, 1972. Zbl0281.49001
  6. [6] J. Ginibre, G. Velo, J. Funct. Anal., t. 32, 1979, p. 1-32 and Ann. IHP, t. A28, 1978, p. 287-316. Zbl0396.35028MR533219
  7. [7] J. Ginibre, G. Velo, Ann. IHP, t. C1, 1984, p. 309-323. Zbl0569.35070MR778977
  8. [8] J. Ginibre, G. Velo, C.R. Acad. Sci. Paris, t. 298, 1984, p. 137-140, and J. Math. Pur. Appl., in press. Zbl0593.35078MR741079
  9. [9] J. Ginibre, G. Velo, Math. Z., 1985, in press. MR786279
  10. [10] P. Hartman, Ordinary differential equations, Birkhäuser, Boston-Basel-Stuttgart, 1982. Zbl0476.34002
  11. [11] J.E. Lin, W. Strauss, J. Funct. Anal., t. 30, 1978, p. 245-263. Zbl0395.35070MR515228
  12. [12] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod and Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
  13. [13] J.L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1, Dunod, Paris, 1968. Zbl0165.10801MR247243
  14. [14] H. Pecher, Math. Z., t. 185, 1984, p. 261-270. Zbl0538.35063MR731347
  15. [15] H. Pecher, W. VonWAHL, Manuscripta Math., t. 27, 1979, p. 125-157. Zbl0399.35030MR526824
  16. [16] M. Reed, Abstract non-linear wave equations, Springer, Berlin-Heidelberg-New York, 1976. Zbl0317.35002MR605679
  17. [17] I.E. Segal, Bull. Soc. Math. France, t. 91, 1963, p. 129-135. Zbl0178.45403MR153967
  18. [18] E.M. Stein, Singular Integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970. Zbl0207.13501MR290095
  19. [19] W. Strauss, Anais Acad. Brazil. Ciencias, t. 42, 1970, p. 645-651. Zbl0217.13104
  20. [20] W. Strauss, J. Funct. Anal., t. 41, 1981, p. 110-133. Ibid., t. 43, 1981, p. 281-293. Zbl0466.47006MR614228
  21. [21] R. Strichartz, Duke Math. J., t. 44, 1977, p. 705-714. Zbl0372.35001MR512086
  22. [22] F. Treves, Basic linear differential equations, Academic Press, New York-London, 1975. Zbl0305.35001
  23. [23] K. Yosida, Functional analysis, Springer, Berlin-Heidelberg-New York, 1978. Zbl0365.46001MR500055

Citations in EuDML Documents

top
  1. Cédric Galusinski, A singular perturbation problem in a system of nonlinear Schrödinger equation occurring in Langmuir turbulence
  2. Marco Luigi Bernardi, Fabio Luterotti, On some Schroedinger-type variational inequalities
  3. Ramona Anton, Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains
  4. Tosio Kato, On nonlinear Schrödinger equations
  5. Mikhael Balabane, On a regularizing effect of Schrödinger type groups
  6. Nicolas Burq, Estimations de Strichartz pour des perturbations à longue portée de l’opérateur de Schrodinger
  7. Cédric Galusinski, A singular perturbation problem in a system of nonlinear Schrödinger equation occurring in Langmuir turbulence
  8. Thomas Duyckaerts, Inégalités de résolvante pour l’opérateur de Schrödinger avec potentiel multipolaire critique
  9. Fabrice Planchon, Self-similar solutions and Besov spaces for semi-linear Schrödinger and wave equations
  10. J. Ginibre, G. Velo, Time decay of finite energy solutions of the non linear Klein-Gordon and Schrödinger equations

NotesEmbed ?

top

You must be logged in to post comments.