Une inégalité de Gårding à bord

Frédéric Hérau

Journées équations aux dérivées partielles (2000)

  • page 1-12
  • ISSN: 0752-0360


The aim of this work is to give a Gårding inequality for pseudodifferential operators acting on functions in L 2 ( n ) supported in a closed regular region F n . A natural idea is to suppose that the symbol is non-negative in F × n . Assuming this, we show that this result is true for pseudo-differential operators of order one, when F is the half-space, and under a supplementary weak hypothesis of degeneracy of the symbol on the boundary.

How to cite


Hérau, Frédéric. "Une inégalité de Gårding à bord." Journées équations aux dérivées partielles (2000): 1-12. <http://eudml.org/doc/93402>.

author = {Hérau, Frédéric},
journal = {Journées équations aux dérivées partielles},
keywords = {Gårding inequality for pseudodifferential operators on a manifold with boundary},
language = {fre},
pages = {1-12},
publisher = {Université de Nantes},
title = {Une inégalité de Gårding à bord},
url = {http://eudml.org/doc/93402},
year = {2000},

AU - Hérau, Frédéric
TI - Une inégalité de Gårding à bord
JO - Journées équations aux dérivées partielles
PY - 2000
PB - Université de Nantes
SP - 1
EP - 12
LA - fre
KW - Gårding inequality for pseudodifferential operators on a manifold with boundary
UR - http://eudml.org/doc/93402
ER -


  1. [1] Bony, J.-M. et Lerner, N., Quantification asymptotique et microlocalisations d'ordre supérieur. I, Ann. Sci. École Norm. Sup. (4), 22, (1989), pp. 377-433. Zbl0753.35005MR90k:35276
  2. [2] Bony, J.-M., Sur l'inégalité de Fefferman-Phong, Séminaire sur les Équations aux Dérivées Partielles, 1998-1999, Exp. No. III, École Polytech., Palaiseau, 1998. Zbl1086.35529
  3. [3] Guan, P., C2 a priori estimates for degenerate Monge-Ampère equations, Duke Math. J. (2), 86, (1997), pp 323-346. Zbl0879.35059MR98d:35074
  4. [4] Hérau F., Opérateurs pseudo-différentiels semi-bornés, Thèse de Doctorat, Rennes, (1999). 
  5. [5] Hörmander, L., The analysis of linear partial differential operators I, III, Springer-Verlag, Berlin, (1985). Zbl0601.35001
  6. [6] Hwang, I. L., The L2-boundedness of pseudodifferential operators, Trans. Amer. Math. Soc. (1), 302, (1987), pp 55-76. Zbl0651.35089MR88e:47096
  7. [7] Lerner, N., Coherent states and evolution equations, General theory of partial differential equations and microlocal analysis (Trieste, 1995), (Longman), (1996), pp 123-154. Zbl0865.35153MR98a:35151
  8. [8] Lerner, N., The Wick calculus of pseudo-differential operators and energy estimates, New trends in microlocal analysis, (Tokyo, 1995), Springer, (1997), pp. 23-37. Zbl0893.35144MR99i:35187
  9. [9] Lerner, N. et Saint Raymond, X., Une inégalité de Gårding sur une variété à bord, J. Math. Pures Appl. (9), 77, no. 9, (1998), pp. 949-963. Zbl0923.35215MR2000a:35267
  10. [10] Saint Raymond, X., Remarks on Gårding inequalities for differential operators, prépublication Université de nantes, (2000). 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.