The solution of Kato's conjecture (after Auscher, Hofmann, Lacey, McIntosh and Tchamitchian)
Journées équations aux dérivées partielles (2001)
- page 1-14
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topTchamitchian, Philippe. "The solution of Kato's conjecture (after Auscher, Hofmann, Lacey, McIntosh and Tchamitchian)." Journées équations aux dérivées partielles (2001): 1-14. <http://eudml.org/doc/93411>.
@article{Tchamitchian2001,
abstract = {Kato’s conjecture, stating that the domain of the square root of any accretive operator $L=-\operatorname\{div\}(A\nabla )$ with bounded measurable coefficients in $\mathbb \{R\}^n$ is the Sobolev space $H^1(\mathbb \{R\}^n)$, i.e. the domain of the underlying sesquilinear form, has recently been obtained by Auscher, Hofmann, Lacey, McIntosh and the author. These notes present the result and explain the strategy of proof.},
author = {Tchamitchian, Philippe},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-14},
publisher = {Université de Nantes},
title = {The solution of Kato's conjecture (after Auscher, Hofmann, Lacey, McIntosh and Tchamitchian)},
url = {http://eudml.org/doc/93411},
year = {2001},
}
TY - JOUR
AU - Tchamitchian, Philippe
TI - The solution of Kato's conjecture (after Auscher, Hofmann, Lacey, McIntosh and Tchamitchian)
JO - Journées équations aux dérivées partielles
PY - 2001
PB - Université de Nantes
SP - 1
EP - 14
AB - Kato’s conjecture, stating that the domain of the square root of any accretive operator $L=-\operatorname{div}(A\nabla )$ with bounded measurable coefficients in $\mathbb {R}^n$ is the Sobolev space $H^1(\mathbb {R}^n)$, i.e. the domain of the underlying sesquilinear form, has recently been obtained by Auscher, Hofmann, Lacey, McIntosh and the author. These notes present the result and explain the strategy of proof.
LA - eng
UR - http://eudml.org/doc/93411
ER -
References
top- [ACT] Auscher, P., Coulhon, T., Tchamitchian, P.Absence de principe du maximum pour certaines équations paraboliques complexes, Coll. Math., 171 1996, 87-95. Zbl0960.35011MR1397370
- [AHLT] Auscher, P., Hofmann, S., Lewis, J., Tchamitchian, P.Extrapolation of Carleson measures and the analyticity of Kato's square root operator, Acta Math., to appear. Zbl1163.35346MR1879847
- [AHLMT] Auscher, P., Hofmann, S., Lacey, M., McIntosh, A., Tchamitchian, P.The solution of the Kato square root problem for second order elliptic operators on , submitted. Zbl1128.35316
- [AHLLMT] Auscher, P., Hofmann, S., Lacey, M., Lewis, J., McIntosh, A., Tchamitchian, P.La solution des conjectures de Kato, C. R. Acad. Sci. Paris, 327, Série I ( 2001). MR1841892
- [AMT] Auscher, P., McIntosh, A., Tchamitchian, P.Heat kernel of complex elliptic operators and applications, J. Funct. Anal., 152 1998, 22-73. Zbl0919.35035MR1600066
- [AT95] Auscher, P., Tchamitchian, P.Calcul fonctionnel précisé pour des opérateurs elliptiques complexes en dimension un (et applications à certaines équations elliptiques complexes en dimension deux), Ann. Inst. Fourier, 45 1995, 721-778. Zbl0819.35028MR1340951
- [AT] Auscher, P., Tchamitchian, P.Square root problem for divergence operators and related topics, Astérisque 249, Société Mathématique de France, 1998. Zbl0909.35001MR1651262
- [C] Calderón, A. P.Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A. 53 1965, 1092-1099. Zbl0151.16901MR177312
- [CDM] Coifman, R., Deng, D., Meyer, Y.Domaine de la racine carrée de certains opérateurs différentiels accrétifs, Ann. Inst. Fourier 33 1983, 123-134. Zbl0497.35088MR699490
- [CJ] Christ, M., Journé, J.-L.Polynomial growth estimates for multilinear singular integral operators, Acta Math. 159 1987, 51-80. Zbl0645.42017MR906525
- [CMM] Coifman, R., McIntosh, A., Meyer, Y.L’intégrale de Cauchy définit un opérateur borné sur pour les courbes lipschitziennes, Ann. Math. 116 1982, 361-387. Zbl0497.42012MR672839
- [FJK] Fabes, E., Jerison, D., Kenig, C.Multilinear square functions and partial differential equations, Amer. J. of Math. 107 1985, 1325-1367. Zbl0655.35007MR815765
- [J] Journé, J.-L.Remarks on the square root problem, Pub. Math. 35 1991, 299-321. Zbl0739.47009MR1103623
- [K] Kato, T.Fractional powers of dissipative operators, J. Math. Soc. Japan 13 1961, 246-274. Zbl0113.10005MR138005
- [KM] Kenig, C., Meyer, Y.The Cauchy integral on Lipschitz curves and the square root of second order accretive operators are the same, Recent Progress in Fourier Analysis (I. Peral, ed.), Math. Studies 111, North Holland, 1985, 123-145. Zbl0641.47039MR848144
- [M72] McIntosh, A.On the Comparability of and , Proc. Amer. Math. Soc. 32 1972, 430-434. Zbl0248.47020MR290169
- [M82] McIntosh, A.On representing closed accretive sesquilinear forms as , Collège de France Seminar, Volume III (H. Brezis and J.-L. Lions, eds.), Research Notes in Mathematics 70, Pitman, 1982, 252-267. Zbl0515.47013MR670278
- [M83] McIntosh, A.Square roots of operators and applications to hyperbolic , Miniconference on Operator Theory and Partial Differential Equations (Canberra), Center for Math. and Appl., The Australian National University, 1983. Zbl0565.35064MR757577
- [M85] McIntosh, A.Square roots of elliptic operators, J. Funct. Anal. 61 1985,307-327. Zbl0592.47043MR820618
- [M86] McIntosh, A.Operators which have an functional calculus, Miniconference on Operator Theory and Partial Differential Equations (Canberra), Center for Math. and Appl., The Australian National University, 1986. Zbl0634.47016MR912940
- [S] Semmes, S.Square function estimates and the Theorem, Proc. Amer. Math. Soc. 110 1990, 3, 721-726. Zbl0719.42023MR1028049
- [Y] Yagi, A.Coïncidence entre des espaces d'interpolation et des domaines de puissances fractionnaires d'opérateurs, C. R. Acad. Sci. Paris 299, Série I 1984, 173-176. Zbl0563.46042MR759225
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.