The solution of Kato's conjecture (after Auscher, Hofmann, Lacey, McIntosh and Tchamitchian)

Philippe Tchamitchian

Journées équations aux dérivées partielles (2001)

  • page 1-14
  • ISSN: 0752-0360

Abstract

top
Kato’s conjecture, stating that the domain of the square root of any accretive operator L = - div ( A ) with bounded measurable coefficients in n is the Sobolev space H 1 ( n ) , i.e. the domain of the underlying sesquilinear form, has recently been obtained by Auscher, Hofmann, Lacey, McIntosh and the author. These notes present the result and explain the strategy of proof.

How to cite

top

Tchamitchian, Philippe. "The solution of Kato's conjecture (after Auscher, Hofmann, Lacey, McIntosh and Tchamitchian)." Journées équations aux dérivées partielles (2001): 1-14. <http://eudml.org/doc/93411>.

@article{Tchamitchian2001,
abstract = {Kato’s conjecture, stating that the domain of the square root of any accretive operator $L=-\operatorname\{div\}(A\nabla )$ with bounded measurable coefficients in $\mathbb \{R\}^n$ is the Sobolev space $H^1(\mathbb \{R\}^n)$, i.e. the domain of the underlying sesquilinear form, has recently been obtained by Auscher, Hofmann, Lacey, McIntosh and the author. These notes present the result and explain the strategy of proof.},
author = {Tchamitchian, Philippe},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-14},
publisher = {Université de Nantes},
title = {The solution of Kato's conjecture (after Auscher, Hofmann, Lacey, McIntosh and Tchamitchian)},
url = {http://eudml.org/doc/93411},
year = {2001},
}

TY - JOUR
AU - Tchamitchian, Philippe
TI - The solution of Kato's conjecture (after Auscher, Hofmann, Lacey, McIntosh and Tchamitchian)
JO - Journées équations aux dérivées partielles
PY - 2001
PB - Université de Nantes
SP - 1
EP - 14
AB - Kato’s conjecture, stating that the domain of the square root of any accretive operator $L=-\operatorname{div}(A\nabla )$ with bounded measurable coefficients in $\mathbb {R}^n$ is the Sobolev space $H^1(\mathbb {R}^n)$, i.e. the domain of the underlying sesquilinear form, has recently been obtained by Auscher, Hofmann, Lacey, McIntosh and the author. These notes present the result and explain the strategy of proof.
LA - eng
UR - http://eudml.org/doc/93411
ER -

References

top
  1. [ACT] Auscher, P., Coulhon, T., Tchamitchian, P.Absence de principe du maximum pour certaines équations paraboliques complexes, Coll. Math., 171 1996, 87-95. Zbl0960.35011MR1397370
  2. [AHLT] Auscher, P., Hofmann, S., Lewis, J., Tchamitchian, P.Extrapolation of Carleson measures and the analyticity of Kato's square root operator, Acta Math., to appear. Zbl1163.35346MR1879847
  3. [AHLMT] Auscher, P., Hofmann, S., Lacey, M., McIntosh, A., Tchamitchian, P.The solution of the Kato square root problem for second order elliptic operators on n , submitted. Zbl1128.35316
  4. [AHLLMT] Auscher, P., Hofmann, S., Lacey, M., Lewis, J., McIntosh, A., Tchamitchian, P.La solution des conjectures de Kato, C. R. Acad. Sci. Paris, 327, Série I ( 2001). MR1841892
  5. [AMT] Auscher, P., McIntosh, A., Tchamitchian, P.Heat kernel of complex elliptic operators and applications, J. Funct. Anal., 152 1998, 22-73. Zbl0919.35035MR1600066
  6. [AT95] Auscher, P., Tchamitchian, P.Calcul fonctionnel précisé pour des opérateurs elliptiques complexes en dimension un (et applications à certaines équations elliptiques complexes en dimension deux), Ann. Inst. Fourier, 45 1995, 721-778. Zbl0819.35028MR1340951
  7. [AT] Auscher, P., Tchamitchian, P.Square root problem for divergence operators and related topics, Astérisque 249, Société Mathématique de France, 1998. Zbl0909.35001MR1651262
  8. [C] Calderón, A. P.Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A. 53 1965, 1092-1099. Zbl0151.16901MR177312
  9. [CDM] Coifman, R., Deng, D., Meyer, Y.Domaine de la racine carrée de certains opérateurs différentiels accrétifs, Ann. Inst. Fourier 33 1983, 123-134. Zbl0497.35088MR699490
  10. [CJ] Christ, M., Journé, J.-L.Polynomial growth estimates for multilinear singular integral operators, Acta Math. 159 1987, 51-80. Zbl0645.42017MR906525
  11. [CMM] Coifman, R., McIntosh, A., Meyer, Y.L’intégrale de Cauchy définit un opérateur borné sur L 2 ( ) pour les courbes lipschitziennes, Ann. Math. 116 1982, 361-387. Zbl0497.42012MR672839
  12. [FJK] Fabes, E., Jerison, D., Kenig, C.Multilinear square functions and partial differential equations, Amer. J. of Math. 107 1985, 1325-1367. Zbl0655.35007MR815765
  13. [J] Journé, J.-L.Remarks on the square root problem, Pub. Math. 35 1991, 299-321. Zbl0739.47009MR1103623
  14. [K] Kato, T.Fractional powers of dissipative operators, J. Math. Soc. Japan 13 1961, 246-274. Zbl0113.10005MR138005
  15. [KM] Kenig, C., Meyer, Y.The Cauchy integral on Lipschitz curves and the square root of second order accretive operators are the same, Recent Progress in Fourier Analysis (I. Peral, ed.), Math. Studies 111, North Holland, 1985, 123-145. Zbl0641.47039MR848144
  16. [M72] McIntosh, A.On the Comparability of A 1 / 2 and A * 1 / 2 , Proc. Amer. Math. Soc. 32 1972, 430-434. Zbl0248.47020MR290169
  17. [M82] McIntosh, A.On representing closed accretive sesquilinear forms as A 1 / 2 u , A * 1 / 2 v , Collège de France Seminar, Volume III (H. Brezis and J.-L. Lions, eds.), Research Notes in Mathematics 70, Pitman, 1982, 252-267. Zbl0515.47013MR670278
  18. [M83] McIntosh, A.Square roots of operators and applications to hyperbolic P D E , Miniconference on Operator Theory and Partial Differential Equations (Canberra), Center for Math. and Appl., The Australian National University, 1983. Zbl0565.35064MR757577
  19. [M85] McIntosh, A.Square roots of elliptic operators, J. Funct. Anal. 61 1985,307-327. Zbl0592.47043MR820618
  20. [M86] McIntosh, A.Operators which have an H functional calculus, Miniconference on Operator Theory and Partial Differential Equations (Canberra), Center for Math. and Appl., The Australian National University, 1986. Zbl0634.47016MR912940
  21. [S] Semmes, S.Square function estimates and the T ( b ) Theorem, Proc. Amer. Math. Soc. 110 1990, 3, 721-726. Zbl0719.42023MR1028049
  22. [Y] Yagi, A.Coïncidence entre des espaces d'interpolation et des domaines de puissances fractionnaires d'opérateurs, C. R. Acad. Sci. Paris 299, Série I 1984, 173-176. Zbl0563.46042MR759225

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.