Asymptotic behavior of regularized scattering phases for long range perturbations

Jean-Marc Bouclet

Journées équations aux dérivées partielles (2002)

  • page 1-12
  • ISSN: 0752-0360

Abstract

top
We define scattering phases for Schrödinger operators on d as limit of arguments of relative determinants. These phases can be defined for long range perturbations of the laplacian; therefore they can replace the spectral shift function (SSF) of Birman-Krein’s theory which can just be defined for some special short range perturbations (we shall recall this theory for non specialists). We prove the existence of asymptotic expansions for these phases, which generalize results on the SSF.

How to cite

top

Bouclet, Jean-Marc. "Asymptotic behavior of regularized scattering phases for long range perturbations." Journées équations aux dérivées partielles (2002): 1-12. <http://eudml.org/doc/93429>.

@article{Bouclet2002,
abstract = {We define scattering phases for Schrödinger operators on $\mathbb \{R\}^d$ as limit of arguments of relative determinants. These phases can be defined for long range perturbations of the laplacian; therefore they can replace the spectral shift function (SSF) of Birman-Krein’s theory which can just be defined for some special short range perturbations (we shall recall this theory for non specialists). We prove the existence of asymptotic expansions for these phases, which generalize results on the SSF.},
author = {Bouclet, Jean-Marc},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-12},
publisher = {Université de Nantes},
title = {Asymptotic behavior of regularized scattering phases for long range perturbations},
url = {http://eudml.org/doc/93429},
year = {2002},
}

TY - JOUR
AU - Bouclet, Jean-Marc
TI - Asymptotic behavior of regularized scattering phases for long range perturbations
JO - Journées équations aux dérivées partielles
PY - 2002
PB - Université de Nantes
SP - 1
EP - 12
AB - We define scattering phases for Schrödinger operators on $\mathbb {R}^d$ as limit of arguments of relative determinants. These phases can be defined for long range perturbations of the laplacian; therefore they can replace the spectral shift function (SSF) of Birman-Krein’s theory which can just be defined for some special short range perturbations (we shall recall this theory for non specialists). We prove the existence of asymptotic expansions for these phases, which generalize results on the SSF.
LA - eng
UR - http://eudml.org/doc/93429
ER -

References

top
  1. [1] M. Sh. Birman, M. G. Krein, On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR, 144, 475-478 (1962). Zbl0196.45004MR139007
  2. [2] M. Sh. Birman, D. R. Yafaev, The spectral shift function. The work of M. G. Krein and its further development, St. Petersburg Math. J. 4, 833-870 (1993). Zbl0791.47013MR1202723
  3. [3] D. Bollé, F. Gesztesy, H. Grosse, W. Schweiger, B. Simon, Witten index, axial anomaly and Krein's spectral function in supersymmetric quantum mechanics, J. Math. Phys. 28, 1512-1525 (1987). Zbl0643.47005MR894842
  4. [4] N. Borisov, W. Müller, R. Schrader, Relative index, axial anomaly and Krein's spectral shift function in supersymmetric scattering theory, Commun. Math. Phys. 114, 475-513 (1988). Zbl0663.58032MR929141
  5. [5] J.M. Bouclet, Distributions spectrales pour des opérateurs perturbés, PhD thesis, Nantes University (2000). 
  6. [6], Traces formulae for relatively Hilbert-Schmidt perturbations, Asymptotic Analysis, to appear. Zbl1062.47021MR1993651
  7. [7], Spectral distributions for long range perturbations, preprint of Sussex University, (2002). 
  8. [8] V. Bruneau, Propriétés asymptotiques du spectre continu d'opérateurs de Dirac, PhD Thesis, University of Nantes, (1995). 
  9. [9] V. Bruneau, V. Petkov, Semiclassical estimates for trapping perturbations, Commun. Math. Phys. 213, No. 2, 413-432 (2000). Zbl1028.81020MR1785462
  10. [10] N. Burq, Lower bounds for shape resonances widths of long range Schrödinger operators, American Journal of Math, to appear. Zbl1013.35019MR1914456
  11. [11] V. S. Buslaev, Trace formulas and some asymptotic estimates of the resolvent kernel for the Schrödinger equation in three dimensional space, Problemy Mat. Fiz. 1, 82-101 (1966). Zbl0203.13403
  12. [12] V. S. Buslaev, L. D. Faddeev, Formulas for traces for a singular SturmLiouville differential operator, Sov. Math. Dokl. 1, 451-454 (1960). II-11 Zbl0129.06501MR120417
  13. [13] Y. Colin-de-Verdière, Une formule de trace pour l'opérateur de Schrödinger dans R 3, Ann. Sci. E.N.S., IV sér. 14, 27-39 (1981). Zbl0482.35068MR618729
  14. [14] C. Gérard, A. Martinez, Prolongement méromorphe de la matrice de scattering pour des problèmes à deux corps à longue portée, Ann. I.H.P., Phys. Théor. 51, No.1, 81-110, (1989). Zbl0711.35097MR1029851
  15. [15] L. Guillopé, Une formule de trace pour l'opérateur de Schrödinger dans R n, thèse de doctorat, Université de Grenoble (1981). 
  16. [16] M. Hitrik, I. Polterovich, Regularized traces and Taylor expansions for the heat semigroup, preprint, (2001). MR1994690
  17. [17] H. Isozaki, H. Kitada, Modified wave operators with time independant modifiers, J. Fac. Sci., Univ. Tokyo, Sect. I A 32, 77-104 (1985). Zbl0582.35036MR783182
  18. [18] L.S. Koplienko, Trace formula for non trace-class perturbations, Sib. Math. J. 25, 735-743 (1984). Zbl0574.47021MR762239
  19. [19], Regularized spectral shift function for one dimensional Schrödinger operator with slowly decreasing potential, Sib. Math. J. 26, 365-369 (1985). Zbl0623.47060MR792056
  20. [20] M. G. Krein, Perturbation determinants and a formula for the trace of unitary and selfadjoint operators, Soviet Math. Dokl. 3, 707-710 (1962). Zbl0191.15201MR139006
  21. [21] A. Melin, Trace distributions associated to the Schrödinger operator, J. Anal. Math. 59, 133-160 (1992). Zbl0807.35169MR1226956
  22. [22] W. Müller, Relative zeta functions, relative determinants and scattering theory, Commun. Math. Phys. 192 (2), 309-347 (1998). Zbl0947.58025MR1617554
  23. [23] D. Robert, On long range scattering for perturbations of Laplace operators, J. Anal. Math. 59, 189-203 (1992). Zbl0813.35072MR1226959
  24. [24], Asymptotique de la phase de diffusion à haute énergie pour des perturbations du second ordre du Laplacien, Ann. Sci. École Norm. Sup., 4ème série, No. 25, 107-134 (1992). Zbl0801.35100MR1169349
  25. [25], Relative time delay for perturbations of elliptic operators and semiclassical asymptotics, J. Funct. Anal. 126, No.1, 36-82 (1994). Zbl0813.35073MR1305063
  26. [26] D. Yafaev, Mathematical scattering theory. General theory, vol. 105, A.M.S. Rhode Island (1992) Zbl0761.47001MR1180965

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.