Asymptotic behavior of regularized scattering phases for long range perturbations
Journées équations aux dérivées partielles (2002)
- page 1-12
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Sh. Birman, M. G. Krein, On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR, 144, 475-478 (1962). Zbl0196.45004MR139007
- [2] M. Sh. Birman, D. R. Yafaev, The spectral shift function. The work of M. G. Krein and its further development, St. Petersburg Math. J. 4, 833-870 (1993). Zbl0791.47013MR1202723
- [3] D. Bollé, F. Gesztesy, H. Grosse, W. Schweiger, B. Simon, Witten index, axial anomaly and Krein's spectral function in supersymmetric quantum mechanics, J. Math. Phys. 28, 1512-1525 (1987). Zbl0643.47005MR894842
- [4] N. Borisov, W. Müller, R. Schrader, Relative index, axial anomaly and Krein's spectral shift function in supersymmetric scattering theory, Commun. Math. Phys. 114, 475-513 (1988). Zbl0663.58032MR929141
- [5] J.M. Bouclet, Distributions spectrales pour des opérateurs perturbés, PhD thesis, Nantes University (2000).
- [6], Traces formulae for relatively Hilbert-Schmidt perturbations, Asymptotic Analysis, to appear. Zbl1062.47021MR1993651
- [7], Spectral distributions for long range perturbations, preprint of Sussex University, (2002).
- [8] V. Bruneau, Propriétés asymptotiques du spectre continu d'opérateurs de Dirac, PhD Thesis, University of Nantes, (1995).
- [9] V. Bruneau, V. Petkov, Semiclassical estimates for trapping perturbations, Commun. Math. Phys. 213, No. 2, 413-432 (2000). Zbl1028.81020MR1785462
- [10] N. Burq, Lower bounds for shape resonances widths of long range Schrödinger operators, American Journal of Math, to appear. Zbl1013.35019MR1914456
- [11] V. S. Buslaev, Trace formulas and some asymptotic estimates of the resolvent kernel for the Schrödinger equation in three dimensional space, Problemy Mat. Fiz. 1, 82-101 (1966). Zbl0203.13403
- [12] V. S. Buslaev, L. D. Faddeev, Formulas for traces for a singular SturmLiouville differential operator, Sov. Math. Dokl. 1, 451-454 (1960). II-11 Zbl0129.06501MR120417
- [13] Y. Colin-de-Verdière, Une formule de trace pour l'opérateur de Schrödinger dans R 3, Ann. Sci. E.N.S., IV sér. 14, 27-39 (1981). Zbl0482.35068MR618729
- [14] C. Gérard, A. Martinez, Prolongement méromorphe de la matrice de scattering pour des problèmes à deux corps à longue portée, Ann. I.H.P., Phys. Théor. 51, No.1, 81-110, (1989). Zbl0711.35097MR1029851
- [15] L. Guillopé, Une formule de trace pour l'opérateur de Schrödinger dans R n, thèse de doctorat, Université de Grenoble (1981).
- [16] M. Hitrik, I. Polterovich, Regularized traces and Taylor expansions for the heat semigroup, preprint, (2001). MR1994690
- [17] H. Isozaki, H. Kitada, Modified wave operators with time independant modifiers, J. Fac. Sci., Univ. Tokyo, Sect. I A 32, 77-104 (1985). Zbl0582.35036MR783182
- [18] L.S. Koplienko, Trace formula for non trace-class perturbations, Sib. Math. J. 25, 735-743 (1984). Zbl0574.47021MR762239
- [19], Regularized spectral shift function for one dimensional Schrödinger operator with slowly decreasing potential, Sib. Math. J. 26, 365-369 (1985). Zbl0623.47060MR792056
- [20] M. G. Krein, Perturbation determinants and a formula for the trace of unitary and selfadjoint operators, Soviet Math. Dokl. 3, 707-710 (1962). Zbl0191.15201MR139006
- [21] A. Melin, Trace distributions associated to the Schrödinger operator, J. Anal. Math. 59, 133-160 (1992). Zbl0807.35169MR1226956
- [22] W. Müller, Relative zeta functions, relative determinants and scattering theory, Commun. Math. Phys. 192 (2), 309-347 (1998). Zbl0947.58025MR1617554
- [23] D. Robert, On long range scattering for perturbations of Laplace operators, J. Anal. Math. 59, 189-203 (1992). Zbl0813.35072MR1226959
- [24], Asymptotique de la phase de diffusion à haute énergie pour des perturbations du second ordre du Laplacien, Ann. Sci. École Norm. Sup., 4ème série, No. 25, 107-134 (1992). Zbl0801.35100MR1169349
- [25], Relative time delay for perturbations of elliptic operators and semiclassical asymptotics, J. Funct. Anal. 126, No.1, 36-82 (1994). Zbl0813.35073MR1305063
- [26] D. Yafaev, Mathematical scattering theory. General theory, vol. 105, A.M.S. Rhode Island (1992) Zbl0761.47001MR1180965