Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential
Journées équations aux dérivées partielles (2002)
- page 1-13
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topHérau, Frédéric. "Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential." Journées équations aux dérivées partielles (2002): 1-13. <http://eudml.org/doc/93435>.
@article{Hérau2002,
abstract = {We consider the Fokker-Planck equation with a confining or anti-confining potential which behaves at infinity like a possibly high degree homogeneous function. Hypoellipticity techniques provide the well-posedness of the weak-Cauchy problem in both cases as well as instantaneous smoothing and exponential trend to equilibrium. Lower and upper bounds for the rate of convergence to equilibrium are obtained in terms of the lowest positive eigenvalue of the corresponding Witten laplacian, with detailed applications},
author = {Hérau, Frédéric},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-13},
publisher = {Université de Nantes},
title = {Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential},
url = {http://eudml.org/doc/93435},
year = {2002},
}
TY - JOUR
AU - Hérau, Frédéric
TI - Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential
JO - Journées équations aux dérivées partielles
PY - 2002
PB - Université de Nantes
SP - 1
EP - 13
AB - We consider the Fokker-Planck equation with a confining or anti-confining potential which behaves at infinity like a possibly high degree homogeneous function. Hypoellipticity techniques provide the well-posedness of the weak-Cauchy problem in both cases as well as instantaneous smoothing and exponential trend to equilibrium. Lower and upper bounds for the rate of convergence to equilibrium are obtained in terms of the lowest positive eigenvalue of the corresponding Witten laplacian, with detailed applications
LA - eng
UR - http://eudml.org/doc/93435
ER -
References
top- [1] F. Bouchut and F. Dolbeault. On long time asymptotics of the Vlasov-FokkerPlanck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials. Differential and Integral Equations, 8(3):487- 514, 1995. Zbl0830.35129MR1306570
- [2] L. Desvillettes and C. Villani. On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation. Comm. Pure Appl. Math., 54(1):1-42, 2001. Zbl1029.82032MR1787105
- [3] N. Dunford and J.T. Schwartz. Linear operators. Part I. John Wiley & Sons Inc., New York, 1988. Zbl0635.47001
- [4] J.P. Eckmann and M. Hairer. Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators. Comm. Math. Phys., 212(1):105-164, 2000. Zbl1044.82008MR1764365
- [5] J.P. Eckmann, C.A. Pillet, and L. Rey-Bellet. Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Comm. Math. Phys., 201(3):657-697, 1999. Zbl0932.60103MR1685893
- [6] B. Helffer. Semi-classical analysis for the Schrödinger operator and applications, volume 1336 of Lect. Notes in Mathematics. Springer-Verlag, Berlin, 1988. Zbl0647.35002MR960278
- [7] B. Helffer and A. Mohamed. Caractérisation du spectre essentiel de l'opérateur de Schrödinger avec un champ magnétique. Ann. Inst. Fourier (Grenoble), 38(2):95-112, 1988. Zbl0638.47047MR949012
- [8] B. Helffer and A. Mohamed. Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells. J. Funct. Anal., 138(1):40-81, 1996. Zbl0851.58046MR1391630
- [9] B. Helffer and J. Nourrigat. Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs. Birkhäuser Boston Inc., Boston, MA, 1985. Zbl0568.35003MR897103
- [10] B. Helffer and J. Sjöstrand. Puits multiples en mécanique semi-classique. IV.étude du complexe de Witten. Comm. Partial Differential Equations, 10(3):245-340, 1985. Zbl0597.35024MR780068
- [11] B. Helffer and F. Nier. work in preparation.
- [12] F. Hérau and F. Nier. Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential. preprint University of Rennes 1, 2002. VIII-11 Zbl1139.82323
- [13] L. Hörmander. Hypoelliptic second order differential equations. Acta Math., 119:147-171, 1967. Zbl0156.10701MR222474
- [14] L. Hörmander. Symplectic classification of quadratic forms, and general Mehler formulas. Math. Z., 219(3):413-449, 1995. Zbl0829.35150MR1339714
- [15] J. Johnsen. On the spectral properties of Witten-Laplacians, their range projections and Brascamp-Lieb's inequality. Integral Equations Operator Theory, 36(3):288-324, 2000. Zbl1023.58012MR1753421
- [16] J.J. Kohn. Lectures on degenerate elliptic problems. In Pseudodifferential operator with applications (CIME 1977), pages 89-151. Liguori, Naples, 1978. Zbl0448.35046MR660652
- [17] G. Métivier. Équations aux dérivées partielles sur les groupes de Lie nilpotents. In Bourbaki Seminar, Vol. 1981/1982, pages 75-99. Soc. Math. France, Paris, 1982. Zbl0497.22011MR689527
- [18] J. Nourrigat. Systèmes sous-elliptiques. In Séminaire sur les équations aux dérivées partielles 1986-1987, pages Exp. No. V, 14. École Polytech., Palaiseau, 1987. Zbl0635.35086MR920023
- [19] J. Nourrigat. Systèmes sous-elliptiques. II. Invent. Math., 104(2), 1991. Zbl0771.35086MR1098615
- [20] M. Reed and B. Simon. Methods of Modern Mathematical Physics, volume 2. Acad. Press, 1975. Zbl0308.47002MR751959
- [21] L. Rey-Bellet and L.E. Thomas. Asymptotic Behavior of Thermal Nonequilibrium Steady States for a Driven Chain of Anharmonic Oscillators. Comm. Math. Phys., 215:1-24, 2000. Zbl1017.82028MR1799873
- [22] L. Rey-Bellet and L.E. Thomas. Exponential Convergence to Non-Equilibrium Stationary States in Classical Statistical Mechanics. Comm. Math. Phys., 225:305-329, 2000. Zbl0989.82023MR1889227
- [23] L. Rey-Bellet and L.E. Thomas. Fluctuations of the Entropy Production in Anharmonic Chains. preprint 2002. Zbl1174.82314MR1915300
- [24] H. Risken. The Fokker-Planck equation. Springer-Verlag, Berlin, second edition, 1989. Methods of solution and applications. Zbl0665.60084MR987631
- [25] L.P. Rothschild and E.M. Stein. Hypoelliptic differential operators and nilpotent groups. Acta Math., 137(3-4):247-320, 1976. Zbl0346.35030MR436223
- [26] D. Talay. Approximation of invariant measures of nonlinear Hamiltonian and dissipative stochastic differential equations. In C. Soize R. Bouc, editor, Progress in Stochastic Structural Dynamics, volume 152 of Publication du L.M.A.-C.N.R.S., pages 139-169, 1999
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.