Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential

Frédéric Hérau

Journées équations aux dérivées partielles (2002)

  • page 1-13
  • ISSN: 0752-0360

Abstract

top
We consider the Fokker-Planck equation with a confining or anti-confining potential which behaves at infinity like a possibly high degree homogeneous function. Hypoellipticity techniques provide the well-posedness of the weak-Cauchy problem in both cases as well as instantaneous smoothing and exponential trend to equilibrium. Lower and upper bounds for the rate of convergence to equilibrium are obtained in terms of the lowest positive eigenvalue of the corresponding Witten laplacian, with detailed applications

How to cite

top

Hérau, Frédéric. "Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential." Journées équations aux dérivées partielles (2002): 1-13. <http://eudml.org/doc/93435>.

@article{Hérau2002,
abstract = {We consider the Fokker-Planck equation with a confining or anti-confining potential which behaves at infinity like a possibly high degree homogeneous function. Hypoellipticity techniques provide the well-posedness of the weak-Cauchy problem in both cases as well as instantaneous smoothing and exponential trend to equilibrium. Lower and upper bounds for the rate of convergence to equilibrium are obtained in terms of the lowest positive eigenvalue of the corresponding Witten laplacian, with detailed applications},
author = {Hérau, Frédéric},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-13},
publisher = {Université de Nantes},
title = {Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential},
url = {http://eudml.org/doc/93435},
year = {2002},
}

TY - JOUR
AU - Hérau, Frédéric
TI - Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential
JO - Journées équations aux dérivées partielles
PY - 2002
PB - Université de Nantes
SP - 1
EP - 13
AB - We consider the Fokker-Planck equation with a confining or anti-confining potential which behaves at infinity like a possibly high degree homogeneous function. Hypoellipticity techniques provide the well-posedness of the weak-Cauchy problem in both cases as well as instantaneous smoothing and exponential trend to equilibrium. Lower and upper bounds for the rate of convergence to equilibrium are obtained in terms of the lowest positive eigenvalue of the corresponding Witten laplacian, with detailed applications
LA - eng
UR - http://eudml.org/doc/93435
ER -

References

top
  1. [1] F. Bouchut and F. Dolbeault. On long time asymptotics of the Vlasov-FokkerPlanck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials. Differential and Integral Equations, 8(3):487- 514, 1995. Zbl0830.35129MR1306570
  2. [2] L. Desvillettes and C. Villani. On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation. Comm. Pure Appl. Math., 54(1):1-42, 2001. Zbl1029.82032MR1787105
  3. [3] N. Dunford and J.T. Schwartz. Linear operators. Part I. John Wiley & Sons Inc., New York, 1988. Zbl0635.47001
  4. [4] J.P. Eckmann and M. Hairer. Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators. Comm. Math. Phys., 212(1):105-164, 2000. Zbl1044.82008MR1764365
  5. [5] J.P. Eckmann, C.A. Pillet, and L. Rey-Bellet. Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Comm. Math. Phys., 201(3):657-697, 1999. Zbl0932.60103MR1685893
  6. [6] B. Helffer. Semi-classical analysis for the Schrödinger operator and applications, volume 1336 of Lect. Notes in Mathematics. Springer-Verlag, Berlin, 1988. Zbl0647.35002MR960278
  7. [7] B. Helffer and A. Mohamed. Caractérisation du spectre essentiel de l'opérateur de Schrödinger avec un champ magnétique. Ann. Inst. Fourier (Grenoble), 38(2):95-112, 1988. Zbl0638.47047MR949012
  8. [8] B. Helffer and A. Mohamed. Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells. J. Funct. Anal., 138(1):40-81, 1996. Zbl0851.58046MR1391630
  9. [9] B. Helffer and J. Nourrigat. Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs. Birkhäuser Boston Inc., Boston, MA, 1985. Zbl0568.35003MR897103
  10. [10] B. Helffer and J. Sjöstrand. Puits multiples en mécanique semi-classique. IV.étude du complexe de Witten. Comm. Partial Differential Equations, 10(3):245-340, 1985. Zbl0597.35024MR780068
  11. [11] B. Helffer and F. Nier. work in preparation. 
  12. [12] F. Hérau and F. Nier. Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential. preprint University of Rennes 1, 2002. VIII-11 Zbl1139.82323
  13. [13] L. Hörmander. Hypoelliptic second order differential equations. Acta Math., 119:147-171, 1967. Zbl0156.10701MR222474
  14. [14] L. Hörmander. Symplectic classification of quadratic forms, and general Mehler formulas. Math. Z., 219(3):413-449, 1995. Zbl0829.35150MR1339714
  15. [15] J. Johnsen. On the spectral properties of Witten-Laplacians, their range projections and Brascamp-Lieb's inequality. Integral Equations Operator Theory, 36(3):288-324, 2000. Zbl1023.58012MR1753421
  16. [16] J.J. Kohn. Lectures on degenerate elliptic problems. In Pseudodifferential operator with applications (CIME 1977), pages 89-151. Liguori, Naples, 1978. Zbl0448.35046MR660652
  17. [17] G. Métivier. Équations aux dérivées partielles sur les groupes de Lie nilpotents. In Bourbaki Seminar, Vol. 1981/1982, pages 75-99. Soc. Math. France, Paris, 1982. Zbl0497.22011MR689527
  18. [18] J. Nourrigat. Systèmes sous-elliptiques. In Séminaire sur les équations aux dérivées partielles 1986-1987, pages Exp. No. V, 14. École Polytech., Palaiseau, 1987. Zbl0635.35086MR920023
  19. [19] J. Nourrigat. Systèmes sous-elliptiques. II. Invent. Math., 104(2), 1991. Zbl0771.35086MR1098615
  20. [20] M. Reed and B. Simon. Methods of Modern Mathematical Physics, volume 2. Acad. Press, 1975. Zbl0308.47002MR751959
  21. [21] L. Rey-Bellet and L.E. Thomas. Asymptotic Behavior of Thermal Nonequilibrium Steady States for a Driven Chain of Anharmonic Oscillators. Comm. Math. Phys., 215:1-24, 2000. Zbl1017.82028MR1799873
  22. [22] L. Rey-Bellet and L.E. Thomas. Exponential Convergence to Non-Equilibrium Stationary States in Classical Statistical Mechanics. Comm. Math. Phys., 225:305-329, 2000. Zbl0989.82023MR1889227
  23. [23] L. Rey-Bellet and L.E. Thomas. Fluctuations of the Entropy Production in Anharmonic Chains. preprint 2002. Zbl1174.82314MR1915300
  24. [24] H. Risken. The Fokker-Planck equation. Springer-Verlag, Berlin, second edition, 1989. Methods of solution and applications. Zbl0665.60084MR987631
  25. [25] L.P. Rothschild and E.M. Stein. Hypoelliptic differential operators and nilpotent groups. Acta Math., 137(3-4):247-320, 1976. Zbl0346.35030MR436223
  26. [26] D. Talay. Approximation of invariant measures of nonlinear Hamiltonian and dissipative stochastic differential equations. In C. Soize R. Bouc, editor, Progress in Stochastic Structural Dynamics, volume 152 of Publication du L.M.A.-C.N.R.S., pages 139-169, 1999 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.