# Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain

Journées équations aux dérivées partielles (2003)

- page 1-14
- ISSN: 0752-0360

## Access Full Article

top## Abstract

top## How to cite

topBanica, Valeria. "Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain." Journées équations aux dérivées partielles (2003): 1-14. <http://eudml.org/doc/93443>.

@article{Banica2003,

abstract = {We concentrate on the analysis of the critical mass blowing-up solutions for the cubic focusing Schrödinger equation with Dirichlet boundary conditions, posed on a plane domain. We bound from below the blow-up rate for bounded and unbounded domains. If the blow-up occurs on the boundary, the blow-up rate is proved to grow faster than $(T-t)^\{-1\}$, the expected one. Moreover, we state that blow-up cannot occur on the boundary, under certain geometric conditions on the domain.},

author = {Banica, Valeria},

journal = {Journées équations aux dérivées partielles},

keywords = {cubic focusing Schrödinger equation; Dirichlet boundary conditions; plane domain; blow-up rate},

language = {eng},

pages = {1-14},

publisher = {Université de Nantes},

title = {Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain},

url = {http://eudml.org/doc/93443},

year = {2003},

}

TY - JOUR

AU - Banica, Valeria

TI - Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain

JO - Journées équations aux dérivées partielles

PY - 2003

PB - Université de Nantes

SP - 1

EP - 14

AB - We concentrate on the analysis of the critical mass blowing-up solutions for the cubic focusing Schrödinger equation with Dirichlet boundary conditions, posed on a plane domain. We bound from below the blow-up rate for bounded and unbounded domains. If the blow-up occurs on the boundary, the blow-up rate is proved to grow faster than $(T-t)^{-1}$, the expected one. Moreover, we state that blow-up cannot occur on the boundary, under certain geometric conditions on the domain.

LA - eng

KW - cubic focusing Schrödinger equation; Dirichlet boundary conditions; plane domain; blow-up rate

UR - http://eudml.org/doc/93443

ER -

## References

top- [1] C. Antonini, Lower bounds for the ${L}^{2}$ minimal periodic blow-up solutions of critical nonlinear Schrödinger equation, Diff. Integral Eq. 15 (2002), no. 6, 749-768. Zbl1016.35018MR1893845
- [2] H. Brézis, T. Gallouët, Nonlinear Schrödinger evolution equation, Nonlinear Analysis, Theory Methods Appl. 4 (1980), no. 4, 677-681. Zbl0451.35023MR582536
- [3] N. Burq, P. Gérard, N. Tzvetkov, Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal. 13 (2003), 1-19. Zbl1044.35084MR1978490
- [4] T. Cazenave, An introduction to nonlinear Schrödinger equations, Textos de Métodos Matemáticos 26, Instituto de Matemática-UFRJ, Rio de Janeiro, RJ (1996).
- [5] I. Gallagher, P. Gérard, Profile decomposition for the wave equation outside a convex obstacle, J. Math. Pures Appl. (9) 80 (2001), no. 1, 1-49. Zbl0980.35088MR1810508
- [6] J. Ginibre, G. Velo, On a class of Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal. 32 (1979), no. 1, 1-71. Zbl0396.35028MR533218
- [7] R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18 (1977), no. 9, 1794-1797. Zbl0372.35009MR460850
- [8] T. Kato, On nonlinear Schrödinger equations, Ann. I. H. P. Physique Théorique 46 (1987), no. 1, 113-129. Zbl0632.35038MR877998
- [9] O. Kavian, A remark on the blowing-up of solutions to the Cauchy problem for nonlinear Schrödinger equations, Trans. Amer. Math. Soc. 299 (1987), no. 1, 193-203. Zbl0638.35043MR869407
- [10] M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+{u}^{p}=0$ in ${R}^{N}$, Arch. Rat. Mech. Ann. 105 (1989), no. 3, 243-266. Zbl0676.35032MR969899
- [11] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincarés Anal. Non Linéaire 1 (1984), no. 2, 109-145. Zbl0541.49009MR778970
- [12] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223-283. Zbl0704.49004MR778974
- [13] M. Maris, Existence of nonstationary bubbles in higher dimensions, J. Math. Pures. Appl. 81 (2002), 1207-1239. Zbl1040.35116MR1952162
- [14] F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equation with critical power, Duke Math. J. 69 (1993), no. 2, 427-454. Zbl0808.35141MR1203233
- [15] F. Merle, P. Raphaël, Blow-up dynamic and upper bound on blow-up rate for critical non linear Schrödinger equation, Université de Cergy-Pontoise, preprint (2003). Zbl1061.35135
- [16] F. Merle, P. Raphaël, On blow-up profile for critical non linear Schrödinger equation, Université de Cergy-Pontoise, preprint (2003).
- [17] T. Ogawa, T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger equations, J. Math. Anal. Appl. 155 (1991), no. 2, 531-540. Zbl0733.35095MR1097298
- [18] T. Ogawa, Y. Tsutsumi, Blow-up solutions for the nonlinear Schrödinger equation with quartic potential and periodic boundary conditions, Springer Lecture Notes in Math. 1450 (1990), 236-251. Zbl0717.35010MR1084613
- [19] M. V. Vladimirov, On the solvability of mixed problem for a nonlinear equation of Schrödinger type, Dokl. Akad. Nauk SSSR 275 (1984), no. 4, 780-783. Zbl0585.35019MR745511
- [20] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolate estimates, Comm. Math. Phys. 87 (1983), no. 4, 567-576. Zbl0527.35023MR691044
- [21] M. I. Weinstein, On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Part. Diff. Eq. 11 (1986), no. 5, 545-565. Zbl0596.35022MR829596
- [22] M. I. Weinstein, Modulation stability of ground states of nonlinear Schrödinger equations, Siam. J. Math. Anal. 16 (1985), no. 3, 472-491. Zbl0583.35028MR783974
- [23] V. E. Zakharov, Collapse of Lagmuir waves, Sov. Phys. JETP 35 (1972), 908-914.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.